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TECHNICAL, PAPER 

NONLINEAR OPT1 MI ZATl ON WITH L IN EAR CONSTRAINTS 
USING A PROJECTION METHQD 

1. INTRODUCTION 

The solution to the extremization problem with a nonlinear objective and linear equality and inequal- 
ity constraints has application to many fields of science and business. Extremization means either maximiza- 
tion or minimization of an objective function with respect to a set of decision variables that may be required 
to satisfy a set of equality and inequality constraints. Finding a solution that simultaneously satisfies the 
constraint equations and extremizes the objective function is, in general, not a straightforward procedure. 
To this end, many methods of extremizing functions have evolved. 

Problems can be divided into two broad categories, linear problems and nonlinear problems. The 
linear problems have a linear objective function and linear constraint equations which can be expressed in 
the following general form : 

extremize f(x1,x2 ,..., xn) = c lx l  + c2x2 + ... + cnxn 

subject to 

n 
a8xj -b iGO , i = l ,  ..., k 

j= 1 

n 
a8xj - bi= 0 , i =  k+l, k+2, ..., h 

j= 1 

n 
a - x - - b i > 0  , i = h + l ,  ..., m 
1J J 

j= 1 

If the variables appear nonlinearly in either the constraints or the objective function, then the problem is 
considered to be nonlinear and, consequently, is generally more difficult to solve. Within this class of prob- 
lems consider these two subclasses: those where the nonlinearities appear only in the objective function, and 
those where the nonlinearities can appear in both the objective and the constraint equations. 

This paper addresses the problem described by a nonlinear objective function and linear constraints. 
The solution technique is based on a method proposed by Rosen (1960) [ 1 I called the Gradient Projection 



Method. In this method, if any of the constraint equations are violated during the unidirectional search, a 
projection method is used to generate a new feasible direction of search. The functions considered here will 
be convex within the region of interest. The functions will also be of class C (first and second order partials 
exist and are continuous). The feasible region is defined by a convex polyhedron formed by the linear con- 
straint equations. Rosen’s method, unfortunately, requires the inverse of the matrix formed from the 
normals cf the binding constraints. Binding constraints are the equality constraints and the violated inequal- 
ity constraints that are treated as equality constraints. Rosen attempted to  reduce the complexity of this 
problem by updating the inverse matrix with a recursive method rather than recalculating it whenever there 

was a change in the binding constraint set. This recursive method depends on the knowledge of (N N) , 
where N is the matrix of the normals of the binding constraints and N is the matrix transpose [ 11. Only 
one hyperplane can, be subtracted or added to the projection matrix1 at a time. Table 1 shows the number 
of computations needed to update the projection matrix for the subtraction of one constraint by the Rosen’s 
method and the method proposed in this paper. This table does not include the computations that would be 
required by the calculation of (NTN)-’. The dimension of the projection matrix calculated by either method 
is equal to the number of independent variables. The Rosen method does not calculate the projection matrix 
with’matrices of this dimension. The rank of the matrices of this method varies with the number of 
independent binding constraints. The proposed method saves ‘operations by taking advantage of the matrix 
symmetry. The last column in Table 1 shows the ratio of the number of operations required by the two 
methods. This paper proposes a solution technique that does not require the calculation of the inverse of 
the matrix of the normals of the binding constraints and, for a large number of problems, requires a smaller 
number of computer operations than does Rosen’s method. The proposed method provides similar results 
with fewer computations, thus in general reducing the computer time. This method is able to add or remove 
many constraints at a time which the Rosen method does not. A comparison between the two methods is 
seen in Figure 1 for the case where there are 20 independent variables. 

2 

T -1 
T 

Section I1 of this paper discusses the general nonlinear optimization problem subject to linear con- 
straints. In Section I11 the problem of finding an initial feasible point is addressed. Phase I of the Two-Phase 
Simplex Method is used to provide a feasible point when a user-provided starting point is infeasible or when 
the problem includes equality constraints, since these must always be satisfied. Section IV discusses a tech- 
nique for locating an extrema within unconstrained feasible space, The method is the Davidon-Fletcher- 
Powell (DFP) which is a variable metric technique [2]. Section V analyzes the solution to the problem with 
constrained extremum and presents the main thrust of the paper. The application of the gradient projection 
method to locating constrained extrema will be discussed. The differences between the method proposed in 
this paper and Rosen’s method will also be detailed. Section VI contains the conclusions. Appendices A and 
B provide the user’s guide and the results of the test cases to which the program was applied. Appendix C 
contains a description of the program used in this paper and Appendix D contains the program listing. 

II. STATEMEIUT OF THE PROBLEM 

Let xi,i=l,2,...,n, be the coordinates of the point x in n-dimensional Euclidean space. Points in space 
will be defined with superscripts, and elements of points will be defined with subscripts. Vectors will be 
represented by columns of elements as 

T 1. ‘An n x n real matrix P is called a projection matrix if and only if P = P and PP = P. 
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TABLE 1. COMPUTATION COMPARISON FOR UPDATING PROJECTION MATRIX 

22 

20 

18 

16 

X 14-  
v) z 
I- 

0 

$? 12-  

2 2 10- 

8 8 -  
5 

6 -  

4 -  

2 -  

Variables 

10 

20 

40 

- 

- 

- 

~ 

Binding 
Constraints 

2 
4 
6 
8 
2 
4 
6 
8 

10 
12' 
14 
16 
18 
4 
8 

12 
16 
20 
24 
28 
32 
36 

Rosen 

Total Number of Operations 

707 
1,167 
1,787 
2,567 
2,512 
3,832 
5,472 
7,432 
9,712 

12,312 
15,232 
18,472 
22,032 
13,662 
24,062 
37,022 
52,542 
70,622 
9 1,262 

114,462 
140,222 
168,542 

FOX 

55 
410 
710 

1,010 
210 

1,530 
2,640 
3,750 
4,860 
5,970 
7,080 
8,190 
9,300 
5,840 

14,240 
22,640 
3 1,040 
39,440 
47,840 
56,240 
64,640 
73.040 

B 

Ratio 

12.9 
2.8 
2.5 
2.5 

12.0 
2.5 
2.1 
2 .o 
2 .o 
2.1 
2.2 
2.3 
2.4 
2.3 
1.7 
1.6 
1.7 
1.8 
1.9 
2 .o 
2.2 
2.3 

BINDING CONSTRAINTS 
Figure 1 .  Operations to update the projection matrix. 
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X =  

T x will be defined as the transpose of the x vector. In this notation, the general maximizing nonlinear pro- 
gramming problem with linear constraints can be expressed as: 

max: f(x) = f(xl,x2, ..., xn), 

subject to the linear equalities and inequalities of the form: 

(ai)' x - bi = 0 , i = 1,2, ..., k<n 

(ai)'x - bi 2 0 , i = k+l ,...,p 

The vectors a', i=lY2,...,p, provide the constraint equation coefficients and the bi, i=l ,2,...,p are scalars. The 
symbol gi will represent the ith constraint. These constraints restrict the solution to k hyperplanes and p-k 
half spaces. Their intersection, R, is a convex polyhedron called the feasible region. R consists of all the 
points that lie on the equalities and within the half spaces. Points in the equality constraints will lie on the 
boundary of this region. The constraints are assumed to  be linearly independent. The problem is depicted in 
Figure 2. The curves lines in Figure 2 are the level contours of f(x). This figure shows the linear constraints 
g2,g3,g4 < 0 and g1,g5 2 0 which outline a feasible space that contains x*. Starting at the unconstrained 
point xo, the search follows the gradient of f(xo) until a constraint is encountered at x'. The projection 
search vectors p1 and p2 are calculated at x and x2, respectively, as new constraints are encountered at 
these points. A constrained optimum may be found at points that are not located at vertices in nonlinear 
problems. Inspection of this figure shows that the optimum point x* occurs on constraint g3, away from a 
constraint vertex. 

1 

111.  FINDING A FEASIBLE POINT 

Most iterative search methods require an initial starting point. These points must either be supplied 
by the user or be generated by an initial point algorithm in the method. For linearly constrained problems 
the Simplex method can be used to find an initial feasible point if one exists. Many nonlinear methods are 
developed based on a quadratic function and extended to the general nonquadratic case by approximations 
of the quadratic. For initial points which are not in the vicinity of the optimal solution, the function may 
not be adequately represented by a quadratic approximation and the solution algorithm generally takes 
longer to converge. If the user supplied initial point for linear constrained problems is not in R, then one 
method of obtaining an initial feasible point is to use Phase I of the Simplex method. The initial point will 
then lie on the boundary of R at one of the vertices formed by a subset of the constraints, and will auto- 
matically satisfy the equality constraints if they are consistent. 

4 



Figure 2. Nonlinear projection optimization. 

The Simplex method extremizes a linear objective function subject to the constraint set 

A x = b  

and 

xi > 0 , i = 1,2 ,..., n 

where A is an m x n matrix and b is an m-dimensional vector. 

The null space of an n x s matrix C is the subspace of all s-dimension vectors y such that 

c y = o  

Denote the subspace of the vectors that have this property by N(C). If x and y are members of this set, then 
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C(x+y) = c x  + c y  = 0 

and if k is a scalar then 

C(kx) = k(Cx) = 0 . 

Let N(C) be the null space of C and have dimension q. Then the set has q linearly independent 
vectors which form the basis for the set defined by C. The column rank of a matrix is equal to the number 
of columns minus the null space dimension. Let the basis of the null space of C be 

v y  ).'., vq . 

This set can be extended to a basis for an s-dimensional space by adjoining d, j=1,2.,,,.r vectors that are 
linearly independent 

v y ,  ..., vq,w1, ..., wr 

where 

q + r = s  . 

Now every column vector x in C can be written 

9 r 
x =  % v i + C  bj wj 

i= 1 j= 1 

Therefore, 

9 r 9 r 
C x = C x  a i v i + C c b j w j = C  a i ( C v i ) + c  bj(Cwj) 

i= 1 j=1 i=l j=1 

Since Cvl= 0 then 

r 

j= 1 
C, = c bj ( C d )  

6 



. . . . . . . . .  - , I  I.,. I- I I I 

Hence, the r vectors CwJ span the co-domain. These vectors are also linearly independent. If 

kl(Cwl) + ... kr(Cwr) = 0 , 

then 

C h = O  , 

where 

h = k l w  1 +...+ krwr . 

So h belongs to N(C) and is a linearly independent combination of the r vectors 

9 r 

i= 1 j= 1 
h = C  l i v i + x k j w j  , 

a contradiction. 

The Simplex method of finding an optimal solution is an iterative update process that solves the 
constraint equations for their vertices. The direction of the move from one vertex to the next is done in a 
manner that increases or decreases the objective function depending on whether it is a minimization or 
maximization problem. Letting zo be the value of the objective function for the previous iteration, 

z = zo + f (optimizing vector) . 

The optimizing vector transforms the last value of the objective function zo to a new value z that is closer 
to the optimal value. Let A be partitioned into matrices B and N such that 

A = (B,N) 

where B is an m x m invertible matrix and N is an m x (n-m) matrix and the rank of A(B,N) is m. Let 
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where the partitions of x have the dimensions m and n-m, respectively, and where XB is associated with the 
B partition of A and XN with the N partition of A. From (1) 

AX = (B,N)x = Bxg + NXN . 

A basic solution will be given by x if 

If x 2 0 ,  then this represents a solution that satisfies all constraints and is called a basic feasible solution 
(BFS). In general, only a small portion of the vertices will have to be examined in order to locate the optimal 
solution to a linear objective function using the Simplex algorithm. The Simplex method requires an initial 
feasible point. Given this, each succeeding vertex will also be feasible. When a better objective function 
value cannot be found at any adjacent vertex and all X B ~  2 0, i=1,2, ..., m, an optimum has been achieved. 
Consider the following minimization problem : 

T m i n z = c x  

such that 

A x = b  

Given a basic feasible solution xBf, 

B-l b .;[::I = [ 0 1  

let cB be the coefficients in the objective function associated with the XB vectors and CN with the XN 

vectors. The objective function z can be given by 

8 



Let 

be an arbitrary basic feasible solution. Then 

and 

Ax = Bxg + NXN = b 

Premultiplying by B-l and rearranging 

XB = B-l b - B-lNxN 

or 

where d is the j th column vector in A and where D is the current set of indices of the nonbasic variables. 
The objective function is 

. - -  
j eD jeD 

Let zo represent the objective function at some arbitrary basic feasible solution. Then 

z = zo - c '(Zj - c.)x. , J J  
jeD 

(4) 
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where zj = cBTB-ld for each nonbasic variable. Since z is to be minimized, it can be seen from (4) that 
whenever 7 - cj > 0 the objective function decreases by introducing some nonbasic variable into the basis 
at a positive value. This rate of decrease will be the largest if we pick the most positive of these zj - cj, say 
Zk - Ck. From (3) 

where 
vector form 

= B'lb and yk = B-lak. Then as Xk increases positively from zero, the basis is modified as shown in 

If y: < o i=1,2,...,mY then x B ~  increases as Xk increases indefinitely. If all y t  2 o then Xk can increase 
only until one of the X B ~  = 0 due to the x > 0 constraints. In the absence of degeneracy (degenerate solu- 
tions are those where the value of at least one of the basic variables equals zero), br > 0, r=l,2,...,m and then 
Xk = br/yr k >, 0. From (4) 

From the choice of Zk - Ck 2 0 for a minimization problem, 

z < z o  . 

Substituting (6) into (5) 

~ ~ = b . - ( y i  k k  /yr )br , i = 1 , 2  ,... ,m . 
-1 

k All other xj = 0. From above, xBr = 0 becomes a nonbasic variable, and Xk = ,br/yr has been added to 
replace it, forming a new BFS. This new BFS will decrease the value of the objective function and will also 
satisfy the constraints. 

Phase I of the Simplex method requires the problem to be set up in the standard form [3 ] .  This is 
accomplished by the 'use of slack and artificial variables. Standard form is obtained when all variables are 
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I 
. .. 

non-negative, all of the constraints are equations, and all constants on the right-hand side are non-negative. 
In this form, row column operations can be performed. In some problems, the coefficient matrix A may not 
contain a full unit matrix of the same order as the number of constraints. This occurs when there are 
equality and less than or equal to constraints. In this case no BFS can be obtained. Artificial variables can 
be added to the constraints to augment A such that a BFS exists. Non-negative slack variables are intro- 
duced as necessary to transform the set of less than or equal to constraints into equalities. This set is then 
examined to determine if a full unit matrix is present. If it is not, non-negative artificial variables are added 
to the appropriate equations to  create a full unit matrix. The Simplex method begins at the origin of the 
primary decision variables with all of the vector b allocated to the artificial and slack variables. These arti- 
ficial variables must be driven to a zero value in the final solution. In Phase I of the two-phase Simplex 
method, the objective function is replaced with an objective function that sums the artificial variables. This 
objective function will be minimized. Consider the following set of constraints: 

2x1 - x3 = - 1 

x i>  0 i =  1,2,3 . 

The addition of non-negative slack variables x4 and x5 allows the problem to be expressed in standard form: 

-2x1 + x 3  = 1 

x i>  0 i =  1,2,3,4,5 . 

Artificial variables can be added to the last two equations to produce the required unit matrix. The Phase I 
Simplex method will reduce these artificials to a value of zero, if a BFS to the problem exists, and thus 
remove them from the solution. From the previous example, after adding the artificial variables x6 and x7, 
the Phase I problem is 

subject to 

x.1- 2x2 + x3 + x4 = 11 



-2x1 + x 3 + x 7 = 1  

x. > 0 i = 1,2,3,4,5,6,7 . 1’ 

This problem can be represented in the following tableau form: 

The tableau is a representation of the problem in detached coefficient form. The cB column is made up of 
the objective function coefficients of the present basic variables listed in the basis column. The coefficients 
of the objective function are shown in the c. row. The columns contain all of the coefficients associated with 
the variables with the exception of the Frow. The columns that contain the present basic variables also con- 
tain the unit matrix. The bottom row is called the cost row and Ej = cj - (cgaj). The b column represents 
the value of the basic variables listed on the same row. The program presented in the last section of the paper 
addresses the problem of finding an initial feasible point. The most efficient way to accomplish this is 
through the user’s organization of the constraints and variables. Nonstandard forms can usually be put into 
standard form by simple substitutions or transformations. For example, in the case where 

J 

the substitution of 

xi=xi+-xi-  , 

where 

can be made. The scalar expression 

lax].< b 

12 



can be expanded in the form 

which can be used in the form 

Many other nonstandard forms can be standardized with similar substitutions or transformations. 

IV. UNCONSTRAINED OPT1 MI ZATlON 

Section I11 discussed the problem of finding an initial feasible point. An initial feasible point is 
essential to using the method proposed by this paper. Once a feasible point is found, a nonlinear optimiza- 
tion method is then applied to the problem. The method proposed here uses the DFP method when the 
present point is not located in any constraint hyperplanes and does not violate any of the constraints. 

The advantage of combining the Rosen gradient projection method (1 960) [ 1 ] with the DFP method 
first introduced by Davidon (1 959) and later modified by Fletcher and Powell (1 963) [ 21 is seen in the rate 
of convergence to the optimal solution. The DFP method, originally developed as a nonlinear unconstrained 
technique [4,5,6], was adapted to a linear constraint method by Goldfarb (1969) [7].  The DFP method is 
considered to be one of the most powerful of the nonlinear search techniques and was developed to solve 
the quadratic function. The method becomes iterative when extended to nonquadratic nonlinear functions. 
By using the Taylor series, it is possible to determine the value of a function in the neighborhood of a known 
point. As the neighborhood becomes small, the Taylor series approximates a quadratic function. The smaller 
the neighborhood the better the approximation. The DFP method combines the best features of the steepest 
descent technique with those of the Newton method and with few of their drawbacks [8]. The steepest 
descent technique generates a search vector using knowledge of the first partials of the objective function. 
The negative gradient of the objective function is represented by the vector 

-Vf(x) = - (7) 

and points in the direction of the most rapid decrease of the objective function from the point x. Steepest 
descent converges to the optimum solution slowly when the function is highly nonlinear. A Newton method 
converges in a single step when operating on a quadratic objective function. This method requires that the 

13 



matrix of second partials be calculated and inverted at each iteration. The DFP method approximates the 
Hessian inverse using only first partials, and improves this approximation at each step. This method gener- 
ates the inverse Hessian after n steps in an n-dimensional quadratic problem. Like the method of conjugate 
gradients, the algorithm of the variable metric DFP method is designed to extremize the following function 
about an arbitrary point xo: 

f = 1 / 2 ( x - ~ ~ ) ~ A ( x - x ~ )  , 

by conducting a sequence of one-dimensional line searches that begin at an arbitrary point xi and locate 
improved points by the relation 

7 (9) 

where 5 is a positive scalar constant and pi is a search vector. The constant 5 is chosen so that xi+' is 
located at the extremum along the direction of search. Since this extremum is located at a point Xi+l where 
the gradient of the objective function is perpendicular to the search vector, their dot product is zero [8]. 
Let 

y(cq = f(xi + (Yip$ 

= o  . 

The extremum along the direction of search occurs at the point xi+' where the search vector is tangent tc  
a contour of the objective function as shown in Figure 3. From (8), 

Vf(xi) = A(xi - xo) . 

Figure 3. Search vector and gradient at xi+1. 
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Using (9) recursively yields 

n- 1 

j= 1 
x n = x i + z  orjpi . 

Subtracting xo from (1 2) and premultiplying by A, 

n- 1 
A(xn-xo) = A(xi-xo) + z aj Ap' . 

j= 1 

Then from (1 1) and (1 3) 

n- 1 
Vf(xn) = Vf(xi) + ?Ad 

j=1 

or as a special case 

Vf(xi+') = Vf(xi) + 9Api . 

If a pi can be chosen so that it is A conjugate to all other search vectors, i.e., 

then two important results can be concluded. First, all of the search vectors p will be linearly independent, 
and second, the quadratic form will be extremized in no more than n steps in n-dimensional space [91. 
Define 

where H is an n x n symmetric positive definite matrix. Fletcher and Powell [2] proved that the iterative 
search method developed by Davidon satisfies the condition specified in (1 5). 

This method will be developed and some of its interesting properties discussed. H will always be 
symmetric and positive definite if Ho is chosen to be symmetric and positive definite and if Hi+l is calcu- 
lated by 

15 



where Bi and Ci are n x n symmetric matrices that are calculated at each step. Using (1 7) recursively, 

n- 1 n- 1 

j=O j=O 

H n = H o +  Bj+ C Cj . 

By choosing 

n- 1 

j=O 
C B ~ = A - ~  

and 

n- 1 

j=O 

C Cj=-Ho , 

1 then (1 8) reduces to Hn = A- . Ho is usually chosen to be I to assure that it is positive definite and 
symmetric. The construction of B shows the importance of the A conjugacy as expressed in (15). The 
individual Bj’s in (18) can be determined by this A conjugate condition. Let T be an n x n matrix with 
columns consisting of the search vectors ply i=O,l ,...,n-1. Then 

TTAT=D , 

where D is an n x n diagonal matrix. This follows from (1 5) since 

dij = ( P ~ ) ~ A $  = 0 , i # j  . 

The double subscripting of a variable will be taken to denote a matrix element. Since A is positive definite, 
A-l exists and A can be solved from (19) 

A = (TT)-~DT-~ = (TD- 1 T 1  T 1- . 

16 



and thus, 

n- 1 c B ~ = T D - ~ T T  . 
j=O 

From linear algebra, the diagonal terms of D-l are l/dfi. Therefore, 

where 

Substituting this last expression into (20) gives 

and substituting (14) into the denominator, 

n- 1 n- 1 

j=O j=O 

Bj = C olj(pi(~)T)/((d)T(Vf(xj+l) - Vf(J)) 

or, in corresponding terms, let 

17 



for i=O,l  ,...,n-1 . In a similar manner, Ci will be developed. Post-multiplying (1 7) with Ap', we have 

H ~ +  = H ~ A P ~  + B ~ A +  + c i ~ p i  . 

Substituting (21) into the middle right-hand term, 

q+ lApi  = q A p i  + ( ~ ' ( p ~ ) ~ A p ~ ) / ( ( p ~ ) ~ A p ~ )  + CiAp' 

= H ~ A P ~  + pi + C~AP' . (23) 

If Ci is chosen so that Hi+lAp' = p', then p' is an eigenvector of Hi+lA. Fletcher and Powell used this 
property to show quadratic convergence [ 21. Using this result in (23) 

c i ~ p i  = - H ~ A P ~  . 

Since (pi)TATHiApi is a scalar value, then 

I = ((~~)TATH~A~~)/((~~)TATH~A~~) . 

The last term in the numerator is a result of the symmetry of H. Again, using (14) 

Ci = -(Hi( Vf(xi+') - V f(xi))( Vf(xi+') - Vf(x i T  )) q T )/(( Vf(xi+') - Vf(xi))THi( Vf(xi+') - Vf(xi))) . 

The third term in the numerator follows from the symmetry of A and from the linear algebra identity 

pTAT = ( A P ) ~  . 

18 
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The search algorithm of (9) with the a search vector defined by the relationship 

pi = -Hi vf(xi) , 

where Hi is updated according to (18) and where the exact step 9 is found along each search vector, will 
converge to the extremum of a quadratic in no more than n steps in n-dimensional space. Examination of 
the Taylor’s series expansion of a nonquadratic nonlinear function around the optimal solution shows that 
as the solution approaches the optimal solution, the function becomes dominated by the quadratic terms. 
In the program presented in this paper, the constant % is.only an approximation of the exact distance from 
x1 to the extremum along p’. The usual method for calculating a, is to curve-fit the points that bracket or 
lie in the vicinity of this extremum. This program uses a quadratic fit. No effort was made to determine the 
consequences of this error on the rate of convergence. The H matrix is reset to I, since H may tend to 
accumuIate errors due to numerical truncation and also due to the errors caused by not finding the exact 
extremum point along each search vector. In this latter error source, the slight inaccuracy causes the dot 
product between the search vector and the gradient of the function at that point to differ from zero, and it 
is also generally necessary to use double precision to reduce the truncation problem. These errors will 
accumulate in the H matrix at each update. A decision must be made to reinitialize the H matrix after a 
number of updates. The usual practice is to reset the H matrix to I after n steps in an n-dimension space. 
The first search vector after this update is the negative gradient of the objective function. Hence, after every 
n steps when H = I, there is a search taken in the direction of steepest descent. 

The advantages of the DFP method lie in the convergence properties that approximate theNewton 
method while using only first order information similar to the steepest descent method. H only approxi- 
mates A-l closely after n steps. The combining of the unconstrained search with the projection technique by 
Rosen allows a search of the feasible region R. Unlike linear programming methods, which are constrained to 
examine only the vertices, this method is free to traverse interior feasible space. 

V. CONSTRAINED OPTlM IZATION 

Section IV discussed a method of nonlinear optimization for problems that have no constraints. 
Many nonlinear problems do have linear constraints, however, and this section will address this type of 
problem. 

The projection method is used at the boundaries of a convex polyhedron where the extremum lies 
outside or on the boundaries of the feasible region R. This method is based on the projection of the gradient 
of a nonlinear function onto these boundaries [ 101 . The space Em is defined as a Euclidean space of dimen- 
sion m and contains a subspace that is spanned by the normals of q binding constraints. The normals of these 
binding constraints are the column vectors of a matrix N where the subscript q denotes that the matrix is 
an m x q matrix. The symbol gi will designate the ith hyperplane associated with the ith constraint. The 
matrix 

9’ 
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is used as pseudo-inverse of the matrix N 
be normals to a set of q linearly independent hyperplanes. Let 

Let a set of q linearly independent unit vectors ul, i=l,...,q < m, 9' 

N = (u1,u2, ..., uq) . (24) 9 

Because of the linear independence of the q vectors, the q x q symmetric matrix N TN is nonsingular, and 
therefore its inverse (N TN )-l exists. Let Q be a subspace of Em that is spanned by the vectors u1,u2, ..., 
uq. Let V be the orthogonal complement of Q in Em. Then V is a subspace of dimension (m-q). Rosen's 
projection method uses a matrix given by 

9 9  

9 9  

N 

pq = N ~ ( N ~ T N ~ ) - ~ N ~ T  

that projects a general vector in Em onto Q. To show this, let v E V. Since V is orthogonal to Q, 

(ui>Tv = o , i = 1, ..., q 

or 

Nqv=O . 

Using this in (25), 

N 

P q v = 0  . 

In Q let w be a vector, which can then be represented as a linear combination of the q vectors that span Q. 
Then 

9 

i= 1 
w = , 

and from (24), 

w = N  a , 9 
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where the vector a is the column vector of the coefficients in (26). Therefore, 

N 

pq w = N q ( ~ q T ~ q ) - l  N ~ T N ~  a 

= N q a  

N 

These results show that Pq is a projection matrix that takes any vector in Em into Q. Let Pq be defined by 

N 

9 -  P = I - P  9 

If v and w are defined as before, then 

hr 

P v = v - P  v = v - o = v  9 9 

and 

N 

P w = w - P  w = w - w = o  
9 9 

From this, any arbitrary vector, x E Em, decomposed as 

x = v + w  

is projected onto the intersection of the q hyperplanes. I t  is also clear that if q = m, then Pq = I and 

P x = o  . 9 

From vector analysis, the projection of a vector z onto the ith hyperplane where V ni(x) is the normal to 
this hyperplane is 

p' = z - di Vni(x) . 
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The variable di is a scalar constant. Figure 4 depicts this where z = Vf(x). If p is specified to be the projec- 
tion onto Q, then 

9 
p = Vf(x) - c di Vni (x) . 

i= 1 

The projection p will lie along the intersection of the q hyperplanes. 

A Langrangian function L is a scalar function of x and h where, if hi is a scalar multiplier and %(x) 
designates the ith equality constraint, then 

At a constrained extremum, the gradient of the Lagrangian vanishes [8,11] and since hi = 0 for nonbinding 
constraints, 

S II 
VL = Vf(x) + C hi Vni(x) + C Vhi(x) = 0 . 

i= 1 i=s+ 1 

/ I 

Figure 4. Projection of Vf(x) onto hyperplane gi. 
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c 

Upon substituting the d:s for X;s, the equivalency between the Lagrangian and the projection equation is 
obvious. The Kuhn-Tucker [ 121 conditions show that, if the d i s  have the proper signs, then 

S !.? 

di Vni(x) - 
i= 1 i=s+ 1 

p = Vf(x) - di V$(x) = 0 

at a bounded optimum. Thus, the projection vector p vanishes at this point. The Kuhn-Tucker conditions are 
based on Farkas Theorem [ 12,131 which states that only one of the two following systems has a solution: 

System: 1 Ax < O  and cx>O 

or 

System: 2 wTA= c and w > O  

where A is a given m x n matrix, c is a given vector of dimension n, and x,w are variable vectors of dimen- 
sion m and n. The first part of the proof of this will be by contradiction. If System 2 has a solution w such 
that wTA = c and w > 0, let x be such that Ax < 0. Then cTx = wTAx < 0 which contradicts the given 
statement. If System 2 has no solution, then c # S = (wTA:w>O). There is some x such that cTx > wTAx 
for all w > 0. If w = 0 then cTx > 0, and as w approaches infinity Ax < 0 completing the proof. The Kuhn- 
Tucker conditions follow from this theorem [ 141. Let Z be a nonempty open set in Em, and let f:Em+E1, 
ni:Em+E1 for i=l ,  ..., s, and \:Em+E1 for i=s+l, ..., 1. Consider the problem L where ni(x) is the ith 
constraint equation. 

Min f(s) 

such that 

ni(x)<O , i =  1 ,2 ,  ..., s 

hi(x) = 0 , i = s+l, ..., 1 

and 

x e z  . 

Let x be a feasible solution, and let I = (i:ni(x) = 0). Suppose that f and ni for i I are differentiable at x, 
that ni for i e I is continuous at x, and that hi for i=s+l, ..., 1 is continuously differentiable at x. Further 

Suppose that vni(x) for i e I and vf$(x) for i=s+l, ..., 1 are linearly independent. If x* solves problem L 
locally, then there exist scalars \ for i=l, ..., 1 such that 
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and 

+ * > O  , i e I  . 

In addition to the above assumptions, if ni for i '# I is also differentiable at x, then the Kuhn-Tucker condi- 
tions could be written in the following equivalent form: 

S Q 
Vf(x*) + C Xi*Vni(x*) + C Xi* q ( x * )  = O 

i=l i=s+ 1 

\*ni(x*) = 0 , i = 1, ..., s 

Xi*>O , i =  1 ,..., s . 

This shows that Vf(x*) is a linear combination of the normals to the constraints. These normals describe a 
cone which contains the function gradient. If A is the matrix of the constraints, then by Farkas Theorem, 
the intersection of the half space defined by Ax < 0 and the open half space cx > 0 is empty and therefore 
has no solution. A geometric interpretation is shown in Figure 5. If some di = 0 or has the wrong sign, then 
the associated constraint hyperplane is nonbinding and must be dropped from the set used to define the 
projection matrix. At x* the gradient of the Lagrangian vanishes when Vf(x*) becomes a linear combination 
of the binding constraints. The projection scalar d and the Lagrange multiplier X are equivalent. 

Figure 5. Graphical display of Farkas Theorem. 
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The number of computations to determine (NqTNq)-l is formidable when Nq is very large. If this 
inverse was recalculated each time a change was made in the defining set of gis, the required computer time 
could become prohibitive. Rosen used a recursive scheme to update the (NqTNq)- matrix rather than 
recalculating it each time a change was made in the binding constraint set. Although this method greatly 
reduced the amount of computation necessary to calculate a new inverse, it can remove or add only one 
constraint at a time. 

1 

In this paper, a method is presented that projects an arbitrary vector x e Em onto a subspace Q C 
Em without the necessity of calculating an inverse. For a projection onto a hyperplane, it is necessary to find 
an exact point in the constraint hyperplane at which to calculate the gradient of the objective function. 
This gradient will then be projected onto the intersection of the binding constraints. The development of 
this method follows. 

A search along the vector HiVf(xi) is made using a scalar multiplier d. Let 

where the superscripts denote specific iterations. Suppose that at some iteration at least one constraint is 
violated by the point xi+l. Let this constraint be the jth hyperplane. 

Substituting (27) into (28) gives 

alj(xli + dHiVf(xi)l) + ad(x2i + dHiVf(xi)2) + ... + amj(xmi + d HiVf(xi)m) = bj , 

where HiVf(xi)k is the kth element of the search vector. Upon gathering terms 

(d)Txi + ( Y ~ ( ~ ’ ) ~ H ~  Vf(xi) = bj . 

Then 

O?(~’ )~H~ Vf(xi) = bj - (d)Txi 

Since (d’)THiVf(xi) is a scalar, 2 can be computed as 

2 = (bj - (d)Txi)/((d)THiVf(Xi)) . 
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This 2 is used to characterize the distance from xi to a point at  the intersection of the search vector and 
each constraint hyperplane that is violated by xi+'. In the case where xi is an interior point in feasible space 
and xi+' is an exterior point, the smallest 2 would be selected. The selected a! will be denoted as a*. The 
knowledge of 2 will be used to eliminate the nonbinding constraints along a search vector. Figure 6 shows 
graphically that the search vector pi from xi may intersect many constraints. Note that g3 should be the 
only binding constraint and also has the smallest di. 

Figure 6. Intersection of search vector and constraints. 

The method of calculating the projection matrix was developed from the well-known Gram-Schmidt 
technique [ 151. All the Vni(x)'s of the binding constraints span the q-dimensional space Q. From abstract 
algebra it is known that the basis of Q is not unique and by employing the Gram-Schmidt method an ortho- 
normal basis for Q can be derived. Choosing 5 as an arbitrary element of the constraint manifold, other 
elements can be found by the method used by A. 0. Morris [ 161 : 
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The 9 vectors are changed to a unit vector by replacing each d by its unit vector where 

The projection of Vf(x), where x is a point in the intersection of the q constraint hyperplanes, onto this 
vector set will be 

p = (I - Ul(U1)T- J (U2)T-  ... - uq(uq)T) Vf(x) . 

Let 

j= 1 

Then 

p = (I - A) V f(X) . 

The method of calculating this A matrix is crucial to the efficiency of the method. From (29) it can be seen 
that the Gram-Schmidt method is also a projection of each succeeding Vni(x) upon the previous vector set. 
Using this, the following recursive method was developed to update A: 

! This vector is normalized to a unit vectors as before. Then 

(31) +ui+l (ui+l)T . %+I = Ai 

When updating A by the addition of constraints, they can be added to the A matrix in any order. The 
removal of constraints is not so simple. In the algorithm, all elements of the A matrix are set to zero and 
are then recalculated. Some of the previous computational work is saved which allows a portion of the A 
matrix to be recalculated with very little computation. Each iteration that updates the projection matrix has 
the same properties as the Gram-Schmidt method in that it is sensitive to the order in which the vectors are 
used in the algorithm. Because of this, the algorithm does not produce a unique projection matrix at inter- 
mediate steps. To eliminate a constraint, simple subtraction cannot be used. The vectors must be removed 
in the reverse order in which they are added. This continues until all the nonbinding constraints have been 
removed. This process will also remove some binding constraints which must then be re-added. The same 
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number of operations are required to remove a vector as to add a vector. If the vector to  be removed had 
been added at the mid-iteration of the algorithm then, as many operations would be required to  remove the 
constraints in reverse order and then regenerate the matrix, as generating the entire projection matrix would 
require. To minimize the computational effort to regenerate the projection matrix, the program presented 
saves the u’s of the appropriate binding constraints. By zeroing all elements in the projection matrix and 
updating it with only the active constraints, the effect is the same as that of dropping all the nonbinding 
constraints at once and adding only the binding constraints. 

VI. CONCLUSIONS 

The theoretical development for the method of nonlinear optimization presented in Section IV 
shows the applicability of this method and some of the advantages over the Rosen method. The method 
proposed by this paper provides similar results with fewer computations per iteration. It has been noted 
earlier that the method presented here eliminates the need to calculate (N N) as required by the Rosen 
method. This not only saves computer time, but avoids a potentially formidable matrix inversion problem 
as the system becomes large. Another advantage of the method proposed here is that there is no limit to the 
number of constraints that can be simultaneously added or removed from the binding set. The Rosen 
method is limited to one addition or removal at a time. 

T -1 

A computer program was developed which implements this method, It is constructed in a modular 
format to facilitate understanding and provide efficiency in application. The program was applied to a 
variety of test problems and was successful in finding the optimum in each case. These cases were chosen to 
evaluate the program’s ability to converge while encountering some of the difficulties that are inherent in 
projection methods. A good comparison between this method and the one used by Rosen could not be made 
because of possible differences in the type of computer used and the programming structure. The program’s 
computer run time is strongly dependent on the techniques used in the line search and the speed and register 
capacity of the computer. The cases were chosen not as a comparison to  problems worked by other pro- 
grams, but to demonstrate the abilities of this program. The only direct comparison is based on the number 
of computations required by each method to update the projection matrix. This should provide some idea 
of the relative speed of operation during the calculation of the projection matrix. Table 1 in Section I shows 
that the method proposed by this paper should be more efficient with computer time when calculating the 
projection matrix. 

6 
An area of future research would be an investigation of the differences of the projection matrix used 

by the two methods. A preliminary look at the projection matrix generated by each method for several 
cases showed that they were the same. If the two methods do generate the same projection matrix for all 
cases, this should be proven rigorously. 

28 



REFERENCES 

1. Rosen, J. B. : The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints. 
Journal of the Society for Industrial and Applied Mathematics, Vol. 8, 1960, pp. 18 1-2 17. 

2. Fletcher, R. and Powell, M. J. D.: A Rapidly Convergent Descent Method for Minimization. Com- 
puter Journal, Vol. 6, 1963, pp. 163-168. 

3. Murty, Katta: Linear and Combinatorial Programming. John Wiley and Sons, Inc., New York, 1976. 

4. Pierre, Donald A.: Optimization Theory with Applications. John Wiley and Sons, Inc., New York, 
1969. 

5 .  Phillips, Don T., Ravindran, A., and Solberg, James J.: Operations Research: Principals and Prac- 
tice. John Wiley and Sons, Inc., New York, 1976. 

6. Pearson, J. D.: Variable Metric Methods of Minimization. Computer Journal, Vol. 6, 1979, pp. 
17 1-1 78. 

7. Goldfarb, Donald: Extension of Davidon’s Variable Metric Method to Maximization Under Linear 
Inequality and Equality Constraints. SIAM Journal of Applied Mathematics, Vol. 17, 1969. 

8. Gottfried, Byron S. and Weisman, Joel: Introduction to  Optimization Theory. Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 1973. 

9. Perlis, Sam: Theory of Matrices. Addison-Wesley Publishing Company, Inc., Reading, Mass., 1952. 

10. Nering, Evar D.: Linear Algebra and Matrix Theory. Second Edition, John Wiley and Sons, Inc., 
New York, 1970. 

1 1. Pierre, Donald A. and Lowe, Michael J. : Mathematical Programming Via Augmented Lagrangians. 
Addison-Wesley Publishing Company, Inc., Advanced Book Program, Reading, Mass. , 1975. 

12. Bazaraa, Mokhtar S. and Jarvis, John J.: Linear Programming and Network Flows. John Wiley and 
Sons, Inc., 1977. 

13. Bazaraa, Mokhtar, S. and Shetty, C. M.: Nonlinear Programming Theory and Algorithms. John 
Wiley and Sons, Inc., New York, 1979. 

14. Martos, Bela: Nonlinear Programming Theory and Methods. American Elsevier Publishing Company, 
Inc., New York, 1975. 

15. Enslein, Ralston, and Wilf: Statistical Methods for Digital Computers. Volume 111, John Wiley and 
Sons, Inc., New York, 1977. 

16. Morris, A. 0.: Linear Algebra. Van Nostrand Reinhold Company, New York, 1978. 

29 





APPENDIX A. USERS GUIDE 

The computer program for the solution method developed in this paper requires two subroutines 
and a data deck to be supplied by the user. The two subroutines are incorporated into the program as sub- 
routines called FUNCT and GRAD. They take the following form: 

SUBROUTINE FUNCT(X,F,N 1 ) 

DIMENSION X(N 1 ) 

F = Objective function 

RETURN 

END 

and 

SUBROUTINE GRAD(X,G,N 1 ,NUM) 

DIMENSION X(Nl),G(Nl) 

G(l)=the first gradient element (af(x)/bxl) 

G(N1 )=the N 1 th gradient element (af(X)/axNl) 

DO 1 I=l,Nl 

1 G(1) = NUM*G(I) 

RETURN 

END 

where 

N1 is the number of independent variables 

F is the function to be extremized 

X(i) is the ith variable element 

G(i) is the ith gradient element of F 

NUM= 1 for maximization and = - 1 for minimization. 
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The coefficients and right-hand side constrant value for the system of linear constraints is read into 
the program from the data deck with the initializing data. The description of each of the data cards follows: 

DATA CARD 1 : 

(MAX/MIN),N 1 ,NN,NC,EPl ,EP2 ,NLEC,NEC,NGEC,NGEX 

These are read according to FORMAT(A3,313,2E 14.7,413) where 

MAX for maximization or MIN for minimization problems 

Nl  - 

NN - 

NC - 

EP1 - 

EP2 - 

NLEC - 

NEC - 

NGEC - 

NGEX - 

Number of variables in the problem 

Maximum number of unconstrained iterations allowed. This will limit the number of 
iterations in case of slow convergence to the solution for the unconstrained DFP method. 

NLEC+NEC+NGEC+NGEX 

If !F(xi+l)-F(xi) I < EPl ; EPl is typically = 0.0001 and detects small changes in the 
function value. This is a condition for convergence. 

If II V F(xi+l)ll < EP2; EP2 is typically equal to 0.0001 and is the norm of the function 
gradient. It is also used as a condition for convergence. 

The number of < constraints 

The number of = constraints 

The number of 2 constraints (excluding NGEX) 

The number of xi 2 0 i=lY2,...,n constraints. 

DATA CARD 2 : 

XO(I),I= 1 ,N 1 

XO is the initial point and is read according to FOR.MAT(lOE13.6). If NC=O (unconstrained problem), the 
following data cards are omitted, 

DATA CARD 3 : 

BC(I),I=l,NC 

BC(1) provides the right-hand side of the constraints. The BC(1) values must be provided in the following 
order (1) less than or equal to constraints, (2) equality constraints, (3) greater than or equal to constraints, 
and (4) nonnegative variable constraints. This ordering is illustrated by the following example: 
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&(x) < b i = 1,2, ..., NLEC 

gj(x) = b j = 1,2, ..., NEC 

gk(X) > b k = 1,2, ..., NGEC 

. The BCs represent the b values and are read according to FORMAT(lOE13.6). The problem requires a 
standard formulation such that xi 2 0 for all i. 

DATA CARDS FOR CONSTRAINTS: 

The coefficients for each of the constraints are read according to FORMAT(lOE13.6). The order for 
the constraints must match the order for the right-hand side constants on data card 3. All coefficients must 
be included, i.e., N1 coefficients for each constraint including zeroes. 

Example problem and corresponding user input: 

Consider the following example: 

max F = (xl - 3) 2 + 9)X2 - 512 

XO = (0.5,-1.2,) 

Such that 

2x1 + x2 G 20 

X I  + 2x2 G40  

X I  + 2x2 < 30 

9x1 + 6 x 2 = 1 0 0  

x1 > o  

x p o .  

SUBROUTINES : 

SUBROUTINE FUNCT(X,F,Nl ) 

DIMENSION X(N 1) 

F=(X(1)-3.)**2+9.*(~(2)-5 .)**2 

RETURN 

END 

33 

I 



SUBROUTINE GRAD(X,G,Nl ,NUM) 

DIMENSION X(N1 ),G(N 1 ) 

G( 1)=2.*(X( 1)-3.) 

G(2)=18.*(X(2)-5.) 

DO 1 I=l,Nl 

1 G(I)=NUM*G(I) 

RETURN 

END 

DATA CARDS 

MAX 2 70 6 0.000 1 0.0001 3 1 0 2 

0.5 

20. 

2. 

1. 

1. 

9. 

1. 

0. 

-1.2 

40. 3 0. 100. 

1. 

2. 

2. 

6 .  

0. 

1. 
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APPENDIX B. TEST PROBLEMS 

This section presents the results of several test problems that were solved with the technique 
developed in this paper. Unconstrained problems were selected to test the DFP method. Linearly constrained 
problems were then selected to test the projection technique. The program was initialized at infeasible points 
for some cases to test the algorithm that generates a feasible starting point. 

UNCONSTRAINED TEST PROBLEMS AND RESULTS 

The following optimization problems were unconstrained. The program uses the DFP method with 
the approximate Hessian inverse matrix reset to I after N+l steps. The restrictions for xi 2 0 are relaxes for 
the unconstrained problems in which NC = 0. 

- T1: BANANA FUNCTION 

The starting point with N = 3 is xo = (-l.,O.,-1.). The minimum was found after 73 iterations of the DFP 
method. The program execution time was 0.1 125 min on a SIGMA-V computer. The minimum point of the 
objective occurred at x* = (1 .,1.,1.) with f(x*) = 0.0. This problem is also known as Rosenbrock's Function 
when N = 2. The Banana function is considered to be a severe test for nonlinear optimization algorithms due 
to the steep valley generated by the coefficient value of 100. 

The starting point with N = 3 is xo = (6.67,6.67,0.). The minimum of the objective occurred at x* = 
(l. ,l . , l .) with f(x*) = 0.0, This problem is similar to T1. The difference is the reduced steepness of the 
valleys formed by the (xi+l - xi 2 2  ) terms. Computer time for execution was 0.0284 minutes and the number 

of iterations was reduced to only 12. 

- T3: MIN f(x) = (XI  - 3)2 + 9(x2 - 5)2 

The starting point is xo = (1 .,1.) and the minimum occurred at x* = (3.,5.) with f(x*) = 0.0. Three iterations 
of the DFP method were performed. The computer time for execution was 0.0159 minutes. 

10 

i=l 
- T4: MIN f(x) = (x - 
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The starting point is xo = (0.,1.,2.,3,,4.,5.,6.,4.,2.,4.). The minimum occurred at x* = (10.,10.,10.,10.,10., 
10.,10.,10.,10.,10.) with f(x*) = 0.0. Only one iteration of the DFP method was required since this is a 
spherical function. The total execution time was 0.0292 minutes. 

CONSTRAINED TEST PROBLEMS AND RESULTS 

For these problems the iterations when using a projected search vector are separated from those of 
the DFP method. The Gradient Projection Method makes no use of the Hessian (or its inverse). For the 
constrained problems, once the solution sequence encountered the boundary of feasible space, it remained 
on the constraint manifold, All these examples were initialized outside of feasible space in order to test the 
routine that fiids a feasible initial point. 

9. 

2 
T5: M I N f ( x ) = C  [lOO(xi+l -x i  2 2  ) +(1 -xi) 2 I - 

i=l 

subject to 

2x1 + x 2 + x 3 < 2 0  

X I  + 2x2 + 2 ~ 3  < 30 

10x1 + 20x2 + x3 > 100 

x i 2 0  , i =  1,2,3 

The minimum of the objective occurred at x* = (6.67,6.67,0.) with f(x*) = .33E+6. The search terminated 
at this point due to satisfying a program convergence test. Since it is not possible to.drop equality con- 
straints from the projection matrix, the last point is taken as a constrained extremum. The minimum was 
found with two projection iterations and no DFP iterations. The total execution time was 0.0630 minutes. 

2 
T6: MAX f ( X ) = C [  lOO(xi+l -x i  2 2  ) + (1 -xi) 2 I - 

i=l 

The constraints are the same as those in T5. The maximum was found at x* = (1.67,14.17,0.) with f(x*)= 
.34E+6. At this point a constrained maximum occurred caused by the restriction of not dropping the 
equality constraints from the projection matrix. This demonstrates the ability to move around on the 
equality constraint manifold in the search for an extremum. This point was found after three projection 
iterations and no DFP searches. The execution time was 0.1 186 minutes. 
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- T7: Max[Tl] 

such that 

XI  + 2x2 + 4x3 G 4 0  

loxl  + 20x2 + x3 2 100 

xi>O , i =  1,2,3 

The constrained maximum was found at x* = (0.,15.,0.) with the value of f(x*) = .65E+5. The maximum 
was obtained in one projection search, and the program execution time was 0.0703 minutes. 

The results for T5, T6, and T7 are shown in Figure B-1. The tests T5 and T6 have an equality con- 
straint that the extremum is required to satisfy. The equality constraint is constraint number 4. The test T7 
had no equality constraints and the extrema for this problem was found at a vertex. The equality constraint 
was changed to an inequality. The test T5 is a minimization and the test T6 is a maximization of the objec- 
tive function which explains why the extrema are found as far away from each other as possible and still 
lie on the equality constraint. 

- T8: MIN[T7] 

The constrained minimum was found at x* = (2.8,3.5,2.7) with f(x*) = .1E+5. The minimum was found 
after eleven projection iterations. The execution time was 0.1020 minutes. Constraints 1 and 5 are binding 
as shown in Figure B-2. The initial point was xo = (0.,5.,0.). From this point the search proceeded along 
constraint 5 until constraint 1 was encountered. The minimum of the objective function was found in the 
seam formed by constraints 1 and 5. 

- T9: MIN [f(x) = 5eXlX6 + X2X43 - X 3  sin(2(X7)) + X52 - 10XgXgl 

such that 

X 3  - 5x5 X6 - X7.G 8 

x + x + 3x4 + x5 + 7x7 G 200 
1 2  

- x 2 + 1 5 x 3 + x 6 - x 7 + 3 ~ g = 2 5  
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Figure B-1. Optimal points for problems T5, T6, and T7. 

Figure B-2. Optimal point for problem T8. 
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-. . .. .- _ _  __ . . . .. 

xi>O , i = l 7 2 , . . . , 8  

The starting point xo = (-1 .,O.,-l .,0.,-1 .,O.,-l .,O.) was outside the feasible region and the program generated 
a new starting point xo = (O.,O.,l .89014,3.5,0.,4.7,8.0521 1,O.)- The minimum of the objective function 
occurred at x* = (0.,0.,1.89014,3.5,0.,4.7,8.0521 1,O.) with f(x*) = 5.727. This constrained minimum was 
found after six projection iterations. The extremum was found in constraints 1 ,  5, 6, 9, 10, 11, 14, and 17. 
The execution time was 0.1224 minutes. This is a vertex of the constraints. 

- T10: MIN [f(x) = (xl - 18)2 + (x2 - 18)2] 

such that 

The starting point was xo = (0,O) and the minimum point was x* = (17.54,16.49) wau:h is a vertex. Figure 
B-3 shows the search path the program followed to  acquire the constrained extremum. This shows the 
advantage of the nonlinear method over the Simplex method for some problems in that it can traverse 
feasible space. A Simplex method would have taken five more iterations. The execution time was 0.0109 
minutes. 
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Figure B-3, Advantages of a nonlinear over a linear search. 
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APPENDIX C. PROGRAM DESCRIPTION 

Appendix C contains a brief description of the function of each subroutine of the program and how 
they interact. The description of each subroutine generally follows the order that data flows through them. 
In some cases the logic flow in the program is controlled by flags that are passed between subroutines. The 
program is modular with each of the modules or subroutines generally performing one logical function. 
Examples of this are found in the MAIN program where the DFP method is located or in subroutine SEEK 
where the line searches are performed. 

t MAIN PROGRAM 

The main program initializes the parameters, which include the number and type of each constraint, 
and assesses the supplied initial starting point to determine if it is in feasible space. If it is not or if the 
problem includes any equality constraints, the MAIN program calls SUBROUTINE FEASPT to internally 
generate an initial starting point in feasible space. The program then calls SUBROUTIN-E FUNCT and 
SUBROUTINE GRAD to  get initial values for f(x) and Vf(x). The Hessian is initialized to I and SUBROU- 
TINE SEEK is called. For the case where the extremum of the function is located in feasible space or where 
there are no constraints, then SEEK returns new values for xi, f(xi), and Vf(xi) that represent an approxi- 
mation to the line search extremum. These values are used to  calculate an update Hessian matrix. The pro- 
gram tests the new point against the criterion for a local extremum. If it has not satisfied this criterion 
another search direction is generated and another line search is made. This continues until a local extremum 
is found or until the maximum iteration limit is acquired, In the case where the extremum is not located in 
feasible space, the constrained extremum point will be returned to MAIN from SUBROUTINE CHK for 
printing and program exit. 

SUBROUTINE FUNCT and SUBROUTINE GRAD 

These are discussed together since they are both user supplied subroutines. The equation for f(x) 
is supplied by the user in FUNCT, and the gradient functions Vf(x) are given in GRAD. The gradient vector 
returned from GRAD has the proper sign for maximization or minimization. 

SUBROUTINE SEEK 

This subroutine calculates the DFP search vector when the search is being conducted from the 
current search point which is unconstrained. When constraints are determined to have been violated, the 
search vector is supplied by SUBROUTINE CHK. The program is sensitive to the magnitude of the search 
vector. It adjusts the initial step sizes along this vector inversely to  the magnitude of the vector. As it steps 
along this vector, new values of f(x) are calcdated. When a change of direction from decreasing to increasing 
values of f(x) along the search direction is detected (extremum is bracketed), a quadratic curve fit of the 
last three points is made in order to  estimate the location of the extremum. Figure C-1 shows the curve fit 
made through y(a) = f(xi + &HiVf) point for successive a's. This method estimates a* for the.minimum 
point of a quadratic curve fit where f(xi+') = min[f(xi + &HiVf(xi)]. This approximation of the actual 
extremum gets better near convergence. In the case where the changz of direction in the values of f(x) 
occurs on the first step along the search vector, the quadratic curve fit is made based on the original starting 
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Figure C-1. Extremum estimation along search vector. 

point of the search vector, the gradient at that point, and the first step point. SUBROUTINE SEEK takes 
ten steps along the search vector. If the values of f(x) have not changed direction, then an error flag is 
returned to the MAIN PROGRAM. If the problem is of such a complexity that a reasonable estimate cannot 
be made, then SUBROUTINE FIB is called to supply this point. SUBROUTINE CHK is always called to 
determine if the point found is in feasible space. If it is not, then CHK returns a new search vector. A return 
is made to MAIN if a constrained extremum was determined. 

SUBROUTINE FIB 

This subroutine performs an eight-step Fibonacci Search along the vector supplied by SEEK. The 
new point which is returned is an approximation of the extremum point along the search vector. An eight- 
step Fibonacci search should be sufficient to provide the proper point within a small error. This type of 
search method is used since the number of steps have been specified in order to obtain the minimum interval 
of uncertainty for the placement of eight points. 

SUBROUTINE CHK 

This subroutine tests for constraint violations. If no violations have occurred, it returns the same 
search vector to SEEK. When new constraints are violated by a search point, CHK selects those that are 
violated. These are added to  the projection matrix. If the number of these constraints equals or exceeds the 
number of dimensions, then SUBROUTINE DROP is called to determine which constraints are to  be 
dropped. SUBROUTINE CHK determines when a constrained extremum has been encountered. When either 
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(1) the projected search vector magnitude becomes smaller than a user set tolerance or (2) the search vector 
points away from any equality constraint, a constrained extremum is assumed to have been found. When 
SUBROUTINE DROP returns a new search vector and a new point, SUBROUTINE CHK determines when 
all new constraints have been acquired and then searches these to see if all of the equality constraints are 
contained in the projection matrix. If they are not, then the original point sent to  DROP is assumed to be 
the constrained extremum. If the same constraints are acquired again, then this point is assumed to be con- 
strained extremum. The projection matrix is returned from SUBROUTINE SPAN. It uses the set of con- 
straints supplied by CHK. 

SUBROUTINE SPAN 

This subroutine uses an algorithm that is based on the Gram-Schmidt method to calculate the pro- 
jection matrix. Any number of new constraints may be added without reinitializing the matrix. When con- 
straints are dropped, all elements in the projection matrix are set to zero and it is recalculated. 

SUBROUTINE DROP 

In this subroutine the search vector is tested to determine if it points into or out of feasible space. 
If it points into feasible space, then only the equality constraints are kept to calculate the new projection 
matrix. If there are no equality constraints, then a flag is set which will cause the program to return to 
MAIN and initiate the DFP Search method from this point. If the search vector points out of feasible space, 
then DROP calculates a new starting point at a very small distance from the constraints and sets the search 
vector equal to the gradient direction. A return is made to CHK to continue the search. 

SUBROUTINE FEASPT 

This subroutine generates an initial feasible point using Phase I of the two-phase Simplex method. 
The Phase I method finds a point that lies on the boundary of feasible space which satisfies all of the 
equality constraints. This point is transferred to the MAIN Program. If Subroutine FEASPT fails to find a 
feasible point or if more equality constraints are present than the number of variables, a message is printed 
indicating the type of difficulty encountered, and an error flag is set that terminates the program. When too 
many equality constraints are present, it indicates that the system has linear dependency, redundancy, or 
is an inconsistent set. 
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C THE UJUALI ' I 'Y  C G M S T R A I N T S .  
C KK = T i i I S  IS  A COUBT OF TiiE T O T A L  t ic) .  OF I T S R A T I O N S  TfiHC)UGri THE 
C H E S S I A N .  1%' I S  U S X D  'Ti) FUKCE THd PROG.  TrlROUGH AT LEAST 
C ill U P D A T E S  O f  'fi' . U S E D  TO ABORT P R U G .  I F  ERROR ROUADS 
C C A H ' Y  BE MET BY S P A C I F I X D  do. OF I Y N R A T I O N S .  
C K = R E S E T S  d = I A P T d R  N1 I T X K A T I O N S .  
C iiC = iJ0. OF COiJSTHAIIJII 'S  I i JSLUDII? IG ThiE Xi>O COi'JSTHAI:4TS 
C NUM = T d E  V A R I A B L d  THAT D E Y I G i J A T d S  E I T r U R  YAX 03 i41IJ.  
C I T  DOXS T d I S  BY IT'S SIG1.I (+/  I S  PIAX, -/ I S  P I I N )  

C0Mi;lOIy X0(1O),X1(1O),fi(10,1O),A(20,10) , G H O ( l O ) , B C ( 2 0 ) ,  

D I P I E l i S I O N  G R l ( l 0 )  , X D ( l O )  , G H D ( 1 0 )  , P ( l O ) ,  

I I i T S G d R  F L A G 1  ,FLAG2,FLAG3,PLAG4,PLAG5,iE,TYPZ,QbIILi,QI~AX 
DATA QMAX, Q N I d  /$d?lAX , 4 h N I N  / 

111 I 'L' I A L I  2 E 
F L A G 5  =O 
KOF=O 
KK=O 
KC =o 
K = O  
I;JUM=l 
R E A D ( 5 , 3 0 0 ) T Y P E , i ' l  , N N , k J C , f i P l  , ~ Y 2 , i ~ L ~ C , ~ ~ ~ C , ~ ~ ~ ~ C , ~ ~ G ~ X  
W R I T E ( 6 , 3 2 0 ) 5 ! Y P E , i I l  , i i N , l V C , d P l  , E P 2 , * ~ L ~ C , l ~ ~ ~ C , l ~ G E C  

l i i l  ,~~C,AAT2(10,10),KOF,NCV0(20) , N L ~ C , d E C , ~ ~ G E C , i ~ G E X , K C  

1 B ( 1 o , 1 o ) , B 1 ( 1 o ) , c ( 1 o , 1 o ) , c d ( 1 o ) , c d ~ i  ( 1 o , 1 o ) 

C***** KOP=O vIi3AMS T d A T  Ti-U SEARCII 1'4USII' S O T A R T  Iii P E A S I B L S  S P A C E .  
C 

320 F U R M A T (  'Vi3  A R B  L O O X I N G  POR A ' , A 3 /  
1 'iJ9. UF DIi~IIEL1SIdNS = I  , 1 3 / ' M A X .  iJO. OF I I I ' j 3RATIc )NS = I  , I3/  
2IL.IU. U P  C O d S T H A I d T S  = ' , I 3 / ' E P l  8c SP2 = ' , 2 E 1 3 . 6 /  
3'iJO. 
4 'dU. UP GE C O i l S T K A I i J T S =  , 13) 

OF Lfi C O i J S T R A I t V T S = '  , I 3 / ' d O . O F  = C O W Z R A I 4 9 ! S = '  , I?/  

R E A D ( 5 , 3 0 1  ) ( X O ( I ) , I = l  , 3 1 1  
W R I T E ( 6 , ~ 2 1 ) h i l  , ( X O ( I ) , I = l  , N 1 )  

321 POHi?lAT( t X O ( I ) , I = l  ,141 ' / k i 3 1 3 . G )  
IP(AC.EQ.O)GO TO 33 
D O  34 1 = 1  , A C  

P 
4 



P 
00 

34 R E A D ( 5 , 3 0 ?  ) B C (  1 ) 
D O  1 I = l , N C  

1 R E A D  (5 ,301  ) A  ( T , J ) , J =  1 , N 1 
WRTTE ( 6 , 3 2 2 )  

322 F O R M A T ( T H T S  1s THE 1 1 ~ 1 1  M A T R T X ' )  
NO = NC -N G9X 
W R I ' T E ( 6 , 3 1 8 )  ( N l ,  ( A ( I ,  J )  , J = 1 ,  N 1 )  , T = l  , N O )  

3 1 8 F 0 RM A'T  ( NE 1 3.6 ) 
W R T T E ( 6 , 4 0 0 ) N O ,  ( B C ( I : )  , T = l ,  N O )  

400  F O R M A T ( ' B C =  , , N E 1 3 . 6 )  
C * * * * s  I F  T H B R E  ARE E Q U A L I T Y  C O N S T R A J N T S  T H E N  T H E  PI-IASE 1 METHOD 
C W I L L  RE U S E D  AS ' P H T S  W I L L  PUT T H E  T N T T T A L  P O T N T  O N  'THE 
C EQUALTTY C O N S T R A I N T S  AS R E Q U T R E D .  

I F ( N E C . N E . ~ ) G O  T O  32 
DO 29 T.=l , N C  
B C 1  = O .  0 
DO 28 J = l , N I  

I F ( T . G T . N L E C ) G O  TO 4 0  
I F (  ( B C ( I  ) - B C l )  . L T .  0 .0  !GO TO 32 

4 0  I F ( I . G T . ( N L E C + N E C ) ) G O  T O  41 
I F  ( ABS ( B C ( I: ) -SC 1 ) . G T  . I  . E -1 2 GO TO 3 2 
GO T O  29 

4 1  IF((BC(I)-BCI).GT.O.O)G~ TO 32 
2 9  C O N T T N U E  

G O  T O  33 
32  C O N T I N U E  

28 B C  1 = A  ( I ,  J ) ~ X O  ( J ) +ac 1 

GO To 29 

C**"*" THTS ROU'TJNE IS THE S J M P L Z X  P H A S E  1 METHOD.  TT P I V O T S  
C T H O U G H  T H E  V E R ' T T C J E S  U N T I L  I T  L O C A T E S  O N E  T N  F E A S T B L E  S P A C E .  

C A L L  F E A S P T ( F L A C 5 )  
I F ( F L A G 5 . E Q .  1 ) G O  T O  36 

IF(N1.GT.NEC)GO T O  33 
DO 35 T = l , N 1  

C***** I T  I S  ASSUMED T H A T  T H E  C O N S T R A T N ' T S  A R E  L T N E A R L Y  I N D E P E N D E N T .  



35 x1  ( . T ) = x o ( r )  
GO TO 2 3  

33 CON'TTNUE 
I F  ( Q M  AX . EQ . T Y P E  ) N UP4 = 1 
I F  ( QM 1 N . E Q . 'TY P E  ) N UM = - 1 

323 F O R M A T ( ' T H E  DATA H A S  B E E N  R E A D ' )  
C 3 * * * s X 0  = I N J ' T I A L  POJNT 
C S k Q Q * Y  = VALUE OF T H E  O B J .  FUNCT. 
C**QQ**Nl = NO. OF D T M E N S T O N S  
C'*S**NC = NO. OF C O N S T R A I N T S  

C A L L  F U N C T ( X O , Y , N l )  
21 0 C O N ' I J N U E  

F L A G 3 = O  
YL =Y 

350 F O R M A T ( '  X O (  I ) , Y  I / N E  1 4 . 7 )  
C GRAD. OF T H E  F U N C T .  AT 'THE POINT X O  

C A L L  GRAD ( X 0 ,  GR 0 ,  N 1 , N UM ) 
351 F O R M A T ( ' G R O ( I ) ' / N E 1 4 . 7 )  
100 C O N T I N U E  

C * * * * * T H I S  SETS T H E  H E S S I A N  = T 
DO 3 I = 1 , N 1  
DO 2 J = I , N l  
AAT2 ( I ,  J )=O.  0 
H(I,J)=O.O 

2 T F ( L  EQ. J ) H  ( I ,  J ) = 1.  o 
N C V O ( I  ) = O  

3 CON'TIMUE 
F L A G l = O  
F L A f 4  =O 
K =O 
YL =Y 

309 C O N T I N U E  
C 
C * * * Y # T H J S  IS  THE L T N E  S E A R C H  M A X ( M I N ) f ( X l + @ H G R A D )  
C 



wl 
0 

C A L L  SEEK(Y,YL,FLAGl,FLAG3,FLAG4,NUM,RHO,P) 
C 
C****s  TF F L A G 3 = 2  T H E  M A X  N O .  OF A T T E M P T S  HAS B E E N  DONE ALONG 
C * % * * *  'THE S E A R C H  V E C T O R .  
C 

C 
C * s * * *  TF F L A G 3 = 1  A C O N S T R A I N E D  M A X ( E I 1 N )  HAS 8 E E N  FOUMD 
C 

C 
C * Q * * *  TIF F L A G 4 = 1  T H E  GRAD NOW P O I N T S  BACK INTO F E A S I B L E  S P A C E  
C 

C 
C*****  TF F L A G 1 = 1  A L I N E  S E A R C H  WITH T H E  C O M P L E T E  H E S S  HAS B E E N  
C C O M P L E T E D  A N D  NOW R E S E T  H E S S = T  
C 

I F ( F L A G 3 . E Q . Z ) G O  T O  27 

I F ( F L A G 3 . E Q .  1 )GO T O  23  

I F (  F L A G 4 . E Q .  1 ) G O  T O  200  

IF(  FLAG^. EQ. 1 )GO T O  22 
C A L L  G R A D ( X l , G R l , N I , N U M )  
W R I T E ( 6 , 3 1 4 )  

314  F O R M A T ( 5 X , t X 1 ' , 1 2 X , ' X O ' , 1 2 X , ' C R ? ' , 1 2 X , ' G R O t )  
WR J T E  ( 6,315 } (X 1 ( T  ) , X O  ( T  } , GR 1 (I 1, G R O  (I: ) 1, I = 1, N 1 

315 F O R N A T ( 4 E l 4 . 7 )  
DO 4 L = l , N l  
X D  ( I  ) = x  1 ( T  }-xo ( I  ) 

4 GR D ( I ) = ( G R  1 ( I ) -GR o ( T ) ) QN u M 
B 2 = 0 . 0  
c 2 = 0 . 0  
DO 20 I = l , N l  
B 2 = B 2 + X D ( T . )  **2  

20 C 2 = C 2 + G R D ( I  )**2 
B2=SQRT(R2) 
C 2 = S Q R T (  C 2 )  
GO TO 22  



200 CONTINUE 
IF(  FLAG^ . EQ. 1 )GO TO 19 

C***S*RESETS THE B&C MATRICES = 0 
KOF =O 
DO 16 I=l,Nl 
NCVO (I ) = O  
CH(I)=O.O 
DO 15 J=l,Nl 
AAT2(I, J)=O.O 
B(I,J)=O.O 

15 C(I,J)=O.O 
16 CONTINUE 

B3=0.0 
DO 5 I=l,Nl 

5 R3=i33+P (1) *GGRD (T ) 
8 3 =ABS (RHO / E 3  

DO 6 I=l,Nl 
DO 6 J=I,Nl 
B (  I, J ) = P  (I )*P (J ) * B 3  

6 B(J,I)=B(I,J) 

IF(FLAG4.EQ.l)GO TO 100 

C 306 FORMAT('B3=',E14.7) 

DO 7 I=l,Nl 
CH (I ) = O .  
DO 7 J=l,Nl 

CHD=O. 
DO 8 I=l,Nl 

DO 9 I=l,Nl 
DO 9 J=I,Nl 

DO 1 1  I=l,Nl 
DO 1 1  J=l,N1 
C(1, J ) = O .  

7 CH(I)=CH(I)+H(I, J)*GRD(J) 

8 CHD=CHD+GRD(I)*CH(I) 

g CHN ( 1, ,J ) =C H ( I ) "GR D ( J ) 



DO 10 J1=1 ,N1 
1 0 C ( I, J ) =C ( I, J ) +CHiJ ( I, J 1 ) *li (J 1 , J ) 
1 1  C(I,J)=C(I,J)/CHD 

DO 12 1=1 ,iil 
DO 12 J=l ,141 

12 i i ( 1 , J ) = d ( I , J > + B ( I , J ) - C ( I , J )  
1 9 CONTINUE 

KK=KK+l 
K=K+1 
DO 21 I=1 ,Nl 
XO(I)=Xl(I) 

21 GRO( I>=GRI (I) 
YL=Y 
GO T O  309 

DO 251 1=1 ,1i1 
2 50 c ONT I N U ~  

251 C O ~ I N U E  
xo(r>=xl (I) 
Gd TO 210 

22 Ci)!WINUE 
C 
C*****MUST GO THRGUGil  4T LGAST 1\11 CALC'S OF 'H' FIRST TIi'4E 
C 

TO 24 
C 
C*****TdIS CfiECK IS T O  DE'I'ERMINE IF YOU'RE CLOSE U ? O U G H  
C 

I k' ( KK . LT . N 1 ) G 0 

IF(B2.LT.EPl.AND.C2.LT.EP2)SO TO 23 
24 CO3'l'INU,3 

I$'( FLAG1 .%Q. 1 )GO Fi3 100 
IY( K.EQ.NI )FLAGI = I  

C 
C****.%IP KK=PiAX 1JO. OF 1TERATIC)NS TfIEN STOP 
C 

IP(KK.EQ.NN)GO TO 23 



C 
C*X"*THIS ALLOWS ONE STEP N T T H  THE COMPLETED 'HI MATRIX 
C 

GO TO 200 

I F (  FLAG3. EQ. 0)GO TO 27 
WR I TE ( 6 , 3  0 5 ) 'TY PE 

2 3  C O N T I N U E  

305 FORWAT('A CONSTRAINED ' ,A3, '  HAS BEE!\I FOUND.' ) 
2 7  C O N T I N U E  

TF(FLAG3.EQ.O)GO TO 37 
TF(FLAS3.NE.2)GO TO 1 3  
WRJTE(G,324) 

CALL G R A D  ( X 1 , G R  1 , N 1 , N Ut4 ) 
GO T O  37 

1 3  CON'TIr\lUE 
DO 38 T = 1  ,N1 

324 FORMAT('THE L I N E  SEARCH HAS T A K E N  'THE M A X .  N O .  OF STEPS') 

x1 ( I ) = X O ( I )  
38 GRl(T)=GRO(T) 
3 7  CONTINUE 

WRTTE(6,303)KK,KC 
303 F O R M A T ( ' N O .  OF U N C O N S T R A T N E D  I T E R A T T O N S = '  ,14// 

* 'NO.  OF C O N S T R A T N E D  TTEHATTONS=' , 1 4 )  
WRT'TE ( 6 , 3 0 4  )Y , N 1, (X 1 (1 ) , T = 7  , I\J 1 ) , N 1, (GR 1 (1: ) , T =1, M 1 

304 FORMAT( ' F ( X * ) = '  , E 1 4 . 7 / / ' X * = '  , N E 1  3 . 6 / /  
* ' G R A D I E N T  F(  X * )  = ' , N E  1 3 . 6 )  

300 FORMAT(A3,3T3,2!?14.7,4T3) 
301 FORMAT(lOE13.6) 

36 C O N T I N U E  
E N D  



SUBROUTINE F UYCT ( A ,  B ,  N ) 
D Z M Z N S J O N  A ( N )  
!3=100. * (  A (  2 )-A( 1 ) * * 2  ) " *2+(  1. -A ( 1 ) ) hs2+  

'I 00. "( A ( 3  ) - A  ( 2 )  'k2) " * 2 + (  1. - A (  2 )  ) " " 2  
R E T U R N  
E N D  

S U B  R O U T  T NE GR A D ( A ,  B , N , N U V  ) 
DT.ME?ISTON A ( N )  ,E(!()  
B (  1 )=-40."( A(2) -A(  1 ) * " 2 ) * A (  1 )-2."( 1 . - A (  1 ) )  
B ( 2  ) =20. "( A(2  ) - A (  1 ) k * 2  ) -2.  " (  1 .  -A(2) ) -40. * (  A ( 3  ) - A  ( 2 )  * * 2 )  * A (  2 ) 
B (  3 )=20. * ( A (  3 )-A( 2 ) ' *2 ) 
TF ( WUM . GT. 0 )RETURN 
DO I r = i , ~  

1 B(I)=NUM*B(J) 
R E T U R N  
E 111 D 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

S UB R OU'T I N  E S E E K ( Y , Y L , FL A G 1 , F LA G 3,  F LA G 4 ,  N UM , R H OM , E D  ) 
B = B M A T R I X  OF C O N S T R A J N T S ( A ' X = B )  
NC = N O .  CF C O N S T R A I N T S  
A = M A T R I X  O F  T H E  C O N S T R A I N T S  C O E F F T C T E N T S  

F L A G 1  = 1 

F L A G 2  = 1 

F L A G 2  = 2 

F L A G 3  = 1 

F L A G 3  = 2 

F L A G 4  = 1 

F L A G 7  = 0 

F L A G 7  = 1 

F L A G 6  = 1 

A L E R T S  Y A I M  PROG.  T H A T  T H E R E  IS A MUYERJCAL 
PROBLEM AND 'TO R E S E T  H = l  

A L E R T S  S E E K  T H A T  CHK TS R E T U R N I N G  A NEC; 

NEW C O N S T R A I N T S  A R E  V I O L A T E D  O R  THE S E A R C H  
V E C T O R .  P O I N T S  I N T O  F E A S .  S P A C E  WTTH NO 
E Q U A L I T Y  C O N S T R A  JMTS P R E S E N T .  

S E A R C H  VECTOR.  I T  JS RESET I N  CHK 'UJHZN NO 

C A U S E S  P L A G 4 = 1  A N D  RETURNS TO T H E  MATN PROG.  
T O  IjO 'THE D F P  METHOD.  

A L E R T S  PROG.  T H A T  A BOUND EXTREMA JS LOCATED.  

A L E R T S  P R O G .  T H A T  T H E  LTPJE S E A R C H  CANNOT F T N D  A 
B E T T E R  VALUE 'THAN T H E  LAST O N E .  (MAX. S T E P S )  
A L E R T S  MATN PROG.  T O  I N J T T A T E  T H E  D F P  METHOD. 

FOR S U B R O U ' I T N E  CHK. 
A L E R T S  CHK T H A T  T H R E E  STEPS ALONG 'PHY L I N E  
S E A R C H  WERE MACE(  MAX N13.) WTTHOU'r F I N D I N G  AN EXTREMA. 

A L E R T S  CHK T H A T  A N  EXTREMA WAS L O C A T E D  ALONG 
'THE S E A R C H  VECTOR.  

S E T  WHEN GOJMG FROM TWO P O I N T  F I T  TO A T H S E E  
POINT METHOD. S E T  = 0 O T H E R W I S E .  

COI4MON X O ( l 0 j  , X 1 ( 1 0 )  ,H(10, I O )  , A ( 2 0 , 1 0 )  , G 3 0 ( 1 0 )  , E i C ( 2 0 ) ,  
1N I ,  NC , A A T 2  ( 1  0 , l O  1, KOF, NCVO ( 2 0 ) ,  N L E C ,  N E C ,  N G E C ,  PIGEX, K C  





C C O N S T R A I N T  H A S  B E E N  F O U N D .  
C 

T F ( U N B N D . L T . O . O ) C O  T O  1 3  

W R I T E ( 6 , 3 l O )  

GO TO 1 3  
1 2  C O N T I N U E  
1 3  COM'l'INUE 

Ci.IP=O. 0 
D M = O .  0 

J F ( I . N E . N C ) G O  TO 1 2  

310  F O R M A T ( ' C O N D I T I 0 N S  FOR A N  UNBOUNDED S O L U T T O N  Y A S  B E E N  D E T E C T E D ' )  

C 
C"5**DMP TS U S E D  T O  S E T  'THE S E N S I T I V I T Y  OF T H E  L I N E  S E A R C H  T O  T H E  
C MAGNT'I'UDE OF THE HGRAD.  
C 

DO 3 T = l , N I  
3 D M P = D M P + 3 D ( T ) * D D ( I )  

D M P = S Q R T  (DM P ) 

I 8 DM =DM +N UM *GR o ( T ) *DD ( T. ) / D M P  

PT =DMP 
DO 18 T = l , N I  

C 
C***** DM = THE GRAD. OF A F U N C T  OF R H O .  (XO+RHO*HGRAD)  
C 

J F (  DMP. GT. 10000. ) R H O = .  001 
I F  (DMP. GE.  200. . AND. DMP. L E .  10000.  ) RIIO = I  0 .  /DMP 
I F  ( DM P . GT .5. . AND . DM P . LT . 2  0 0 ) R HO = . 1 
I F ( Di4 P . LE. 5 ) R H 0 = 1 . 
W R . T ' T E ( 6 , 3 0 0 )  

300 F O R M A T ( ' T H I S  JS H ( I , J )  JN L T N E  S E A R C H ' )  
W R J T E ( 6 , 3 0 3 ) ( N 1 , ( H ( J , J ) , J = l , N 1 ) , I = l , N l )  

303 F O R M A T ( N E 1 3 . 6 )  
C 
C " * & * * I F  THE H E S S  IS BADLY C O N D I T I O N E D  OR H A S  E X C E S S J V E  ROUNDOFF ERROR 
C T H E  S E A R C H  V E C T O R  M A Y  HAVE T H E  WRONG STGN. 



C HENCE DD*GRAD=+ ALWAYS U N L E S S  SOMETHJ?IG TS W R O N G .  
C % s * * *  T H I S  T E S T  ON 'THE C O N D T T T O N  OF S E A R C H I N G  IN 'THE C O N S T R A I N T  MANTFOLD.  
C 

I F ( F L A G 2 . E Q .  1 ) G O  TO 1 0  
TF ( D M * N U M .  L T .  0.3 ) G O T O  7 

C 
C s * s * *  S T E P  DOWN T H E  S E A R C H  VECTOR FOR AT LEAST T H R E E  S T E P S  
C T H E  LATER TNTERPOLA'TTON USES ' T H R E E  P O I N T S  
C 

10  C O N T T N U E  
L L = O  
R H O 1  =RHO 
RHOO=O.O 
RH000=0.0 
Y O = Y L  
YO0 = Y  L 

DO 120 T.=l,Nl 

C A L L  FUNC T ( X  1 , Y 1 , N 1 ) 

110 c o N r r r i u E  

120  X1 ( J ) = X O ( I ) + D D ( I ) * R H O  

C 
C * " * " S T H E  NEXT I F  HAS ( Y 1 . G E . Y O )  WHEN M T N .  A N D  ( Y 1 . L E . Y O )  FOR M A X .  
C 

TF ( NUM . LT . 0. . A N D .  Y 1 . GE . YO ) G O  TO 2 
IF(NUM.GT.O..AND.Yl.LE.YO)GO TO 2 
I F ( L L . E Q . 0 ) 2 0  T O  1 
YO0 =YO 
R H O O O = R H O O  

R H O O = R H O  
L L = L L + l  

1 Y O = Y l  

C 
C**s**IF M A X ( M T N )  H A S N ' T  B E E N  D E T E C T E D  YET THEN C A L C .  A PIT. A N Y W A Y .  
C 

TF(LL.EQ.3.AND.FLAG2.EQ. 1 ) G O  TO 8 



. T F ( L L . L E .  l 0 ) G O  TO 22 
F L A G 3 = 2  
Y = Y 1  
GO TO 8 

22 C O N T I N U E  
R ! - l O = R i l O l * 2 . * ~ L L  
R HOM =RHO 
GO T O  110  

C 
C*%f**"THTS C A T C H E S  T H E  C A S E  WERE THE F T R S T  P'!. S T R A D D L E S  TH5 EXTREMA. 
C 

C 
c 
C***** T H E  ABOVE C A T C H E S  C A S E  TWO (v'(al),v(dl>,v(a2),dl,d2 A R E  K N O W N )  
C***** C A S E  O N E  JS WHERE y ( d 1 )  , y ( d 2 )  , v ( d 3 )  , d l  , d 2 , d 3  A R E  KNObJN.  
C 
C 

2 IF (LL.EQ.O)GO TO. 6 

19 CONTTIJUF 
X X = (  RHOO-RHOOO) " ( Y  1 -YO0 ) - (RHO-NHOOO) ' (YO-YO0 1 
RHOM=RHOOO+.  5 1  ( ( ( HH00-RH000) %*2" (Y 1 -YO0 j -  (RHO -R!lO03) *'2 * 

X ( Y 0 - Y O 0 1  ) / X X )  
I F  ( A B S ( X X )  . LT. .  0000000001 )RHOM=.  000001 

DO 5 T.=l,;Jl 

W R I TE ( 6,3 0 8 ) 

W R I T E ( 6 , 3 0 6 ) ( X l ( r ) , X O ( ~ ) , D D ( ~ ) ) , T . = l , N l  

C A L L  F U N C T ( X l , Y , N l )  

4 C O N T T N U E  

5 x i  (1 ) = x o ( ~ ) + D D ( ~ ) ~ A B s ( R H o ! . I )  

308 i ? O R M A T ( 4 X , 1 X l ( T ) 1  , g X , ' X O ( T ) '  ,9X,'DD(T i t  1 

306 F O R N A T ( ~ E ? ~ .  6 )  

C 
C"**f F L A G 7 = 1  A L E R T S  CHY THAT AN EXTREMA. ON THZ L I N E  S E A R C H  
C WAS FOUND 
C 



I 

Q\ 
0 

FLA'37=1 
IF ( N U I 4 .  LT .O. AND. Y. LE. YO) G0 TU 8 
IF( : w i .  GF .o. A ~ D .  Y. GX. YO) 33 '1'0 13 

C 
C***** GIVE IT TEi'I TRIAS AND T r l B N  CifACK 'i'd Slid IF ITS CL3S.E EiiOUGd. 
C 

14 

20 

17 

15 

16 

31 2 

IC MT = I C LIT + 1 
IP(ICNT.GT.IO)XI TO 15 
IF(PLAGB.XJ.I)GO TO 1 7  
IF(LL.BE.O)GO TO 14 
R kii) 0 = R i I9N 
YO=Y 
FLAG8=1 
30 TO 19 
IF(ABS(R~OM).GT.Rii~O)GO TO 2 0  
R kI 0 0 0 =R f i  0 !'I 
YOO=Y 
GO TO 19 
c UNT INUE 
Rki 0 = Hd OM 
Y1 =Y 
GO Ti) 19 
RriO = R i i  i) 0 
Y1 =YO 
R il. 0 0 = IiH OM 
YO=Y 
GO TO 19 
COiYT INUd 
IF(A3S(ABS(Y)-ABS(YO)).LT.l.E-5*ABS(YO))GO Ti) 8 
CONY Ii iUl3 
PLAG3=2 
WRITX(6,312) 
FORMAT('SEARCH FAILED Ti) FIND A BETTER VALUE TtiAN XO') 
CALL GiiAD(XO,GRO,Nl , d U P I )  
GO T0 9 



C 
C***** Tf-1.TS TS THE r'.TPIAL A D J U S T M E N T  Or" THt3 S E A R C H  S T E P  S.TZE 
C 

6 T F ( A B S ( Y l ) . L T .  ( 1 0 0 . * A B S ( Y O )  ) ) S O  TO 21 
R H O = .  1 *RHO 
GO T O  10 

21 C O N T I N U E  
R H O M = . ~ ~ R H 0 * * 2 " D W / ( R H O " D M + Y O - Y  1 ) 
I F (  ABS(RYOkDM+YO-Y 1 )  . L T .  .0000000001 ) R H O M = .  000001 

C 
C * * * " d  I F  THE G 9 A D  OR P R O J E C T T O N  ARE LARGE AND T H Z  S E A R C H  S T E P  SIZE IS  
C S Y A L L  ' T H E N  MOHE ACCURACY I S  C A L L E D  FOR T H A N  T H E  QUADRA'TTC F I T  
C CAM GTVE SO S U B R O U T I N E  r ' T B  TS C A L L E D .  
C 

I F ( P T . G T . E T O L l . A N D . R H O M . L T . E T O L 2 ) C A L L  FTB(RHO,RBOM,NUM,XO,Nl,DD) 
GO TO 4 

7 F L A G 1 = 1  
6 C O N T I N U E  

I F ( N C . E Q . O ) G O  T O  9 
C 
C * ) * * g  T H I S  R O ' J T I N E  C H E C K S  TO SEE J F  A N Y  C O N S T R A I N T S  A R E  V I O L A T E D  
C A N D  TF SO TT RETURNS WT'TH A NEM S E A R C H  VECTOR 
C 

CALL CHK ( P T  , D D  , F L A G 2 ,  F L A G 3 ,  F L A G 6 ,  MUM, F L A G 7 ,  TO ) 
C 
C"&*** F L A G 3 = ?  A C O N S T R A I N E D  M A X ( M T N )  HAS BEEN F O U Y D  
C 

C 
C * * * * *  F L A G 2 = 1  C O N S T R A I N T ( S )  HAVE B E E N  V I O L A T E D  A N D  CHK HAS 
C S U P P L I E D  A NEW S E A R C H  VECTOR.  
C 

I F (  F L A G 3 . E Q .  1 )GO 'TO 9 

F L A G 7  =O 

C A L L  F U N C T ( X O , Y L , N l )  
T F ( F L A G 2 . N E .  1 )GO TO 11 



IC NT =O 
GO TO 151 

11 IF(FLAG2.EQ.2)FLAC4=1 
9 CON'TJNUI;, 

RETURM 
E N D  



S U B R O U T I N E  F I R (  R H O ,  R H O M ,  N U Y ,  X O ,  N 1 ,  DD) 
C 
C * * s k Q  T H I S  I S  A N  8 S T E P  P I B O N A C C T  S E A R C H  
" L 

D I M E N S T O N  XO ( N  1 ) , X 1 (  l o ) ,  XT 1 ( 1 0 )  , D D  (N 1 ) 
D A T A  E T O L / 1  .E-5/ 
R E A L  L 2  
I S T E P = l  
RANU=Rf-!O 
R A ? I L = O .  
L 2  = ( R H O ' 1 3 .  +( ETOL )i ( -1 ) ic '8 1 1 / 2  1 . 
X 2 = R H O - L 2  

1 C O N T I N U E  
T F ( I S T E P . E Q . 8 ) G O  TO 13  
ISTEP = T S T Z P + l  
DO 2 I = 1 , 1 1 1  
XT 1 ( I ) =XO ( I ) +DD ( I ) %L 2 

2 X l ( 1  ) = X O ( T  )+DD ( I  ) ' X 2  
C A L L  F U N C T ( X T 1  ,Y 1 , N 1  ) 
C A L L  F U N C T ( X l , Y 2 , N l j  
TF(Yl.LT.Y2.AND.X2.GT.((RANU-RANL)/2.+RANL))GO TO 1 0  
I F ( Y  l . L T . Y 2 . A N D . X 2 .  L T .  ( ( R A N U - R A V L ) / 2 . + R A N L > ) G O  TO 7 
IF( Y 1 .  GT. Y2. A N D i X 2 .  CT.  ( ( R A N U - R A N L  ) /2. + R A N L  ) ) G O  TO 6 
IF(NUN.GT.O)GO TO 12 

3 R A N U = L 2  
4 C O N T I N U E  

T F ( X 2 . G T . (  ( R A N U - R A N L ) / 2 . + R A N L ) ) G O  TO 5 
L 2 = (  R A N U - X 2 ) + R A N L  

L 2 = R A N U - ( X 2 -R A 14 L ) 
GO TO 1 

GO TO 1 
6 CON'TTNUE 

I F ( N U N . C T . O ) G O  ' T O  1 1  
1 4  R A N L = L 2  

GO T O  4 

5 



7 C O N ' T I V U E  
. T F ( N U ? I . G T . O ) G O  T O  3 

1 2  R A ? I L = X 2  
8 C O N T J N U E  

I F ( L 2 . G T e (  ( R A N U - R A N L ) / z . + R A N L ) ) G O  T O  9 
X 2 = ( R A N U - L 2 ) + R A N L  
G O  T O  1 
X 2  = R A  N i l - (  L 2 - R A  N L  ) 
G O  TO 1 

9 

10 C O N T J N U B  

1 1  R A N U = X 2  

1 3  C O N T J N U E  

JF(NUM.GT.O)GO T O  1 4  

G O  T O  a 
R H 014 ( R A N U  -R A N L  ) /2.  +R A N L  
R E T U R N  
END 



C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 

A L P i l A  

? L A G 2  = 0 

F L A G 2  = 1 

j1LACc;3 = 1 

F L A G 6  > 0 
F L A G 6  = 2 

jj1LAi;7 = 1 

COPIMOIY X O ( l O ) , X l  ( 1 0 ) , d ( 1 0 , 1 0 )  ,A(20,1O>,CRO(lO),BC(20), 

DIKfiiiSION B ( 2 0 )  , N C V ( 2 0 )  , S A X ( 2 0 )  , S A i i D ( 2 0 )  , A L P i i A ( 2 0 )  , 

I iilTiXxH F L A G 1  , F L A G 2 ,  F L A G 3 ,  F L A i 3 4 ,  F L A C 6 ,  F L A G 7  
R E A L  I D % N T  

WRI1'li(6,313) 

1 1J 1 , NC , A A T Z  ( 1 0 , l O  ) , KOF , J C  VO ( 20 ) , l d L A C ,  d 6 C ,  id G E C  , N 3 3 X ,  KC 

1 i.IC S ( 20 ) , Xii  ( 1 0 ) , P ( 1 0 ) , GRN ( 1 0 ) , d G R O  ( 2 0 ) , NTOC ( 2 0 ) , 
ZM.dB(20)  , N C V 1  ( 2 0 ) , G R T ( 1 0 )  , X ' i ( l U )  

D A T A  E'l!OL/l .X-5/ 

31 3 F ~ J R ~ ~ I A T (  ' 9ii.Z X I  PgIiiY ' ) 



WRITE (6,314>N1, ( X I  ( T  ) , T = l  , N 1 )  
KF =O 
FLAC4 =O 
BT=O.  0 
S A X ( O ) = O .  0 
S A H D  ( 0  ) = O  . 0 
DO 1 4  I = l , N C  

H G R O  (I ) = O .  0 

314 F O R M A T ( N E 1 3 . 6 )  

B ( I j = 3 . 0  

1 4  CONTTNUE 
C 
C***** T H I S  CALCULATES THE ACTUA-L VALUES OF THE COMSTRATh"!' E Q . ' S  
C 

DO 1 I=l,NC 
DO 1 J = l , N I  
B (  I ) = A (  1, J ) * X l  ( J ) + B (  T 1 

TF( FLAG2. EQ. 1 ),GO TO 1 
IF ( I. GT. N 1 ) G O  TO 1 

C 
C*****CINLY NEED H G R O  WHEN G O I W G  FROM F E A S I B L E  SPACE T O  CONSTRATNT. 
C 

H G R O  ( I )=!I (I, J ) * G R O  ( J ) + H G R O  ( T ) 
1 CONTINUE 

C * * * ~ Y * * * , * ~ * * * * * * * * f * * * ~ * ~ ~ ~ * ~ * ~ ~ * * * ~ * ~ * ~ ~ ~ ~ * * # * * ~ * * ~ * ~ * * * * * *  
C * i * * t Y Q f * * * ~ * * f Z * * * * * ~ * * % ~ ~ * * * * * ~ ~ * * ~ # * * * * * ~ * ~ ~ * * ~ * * ~ ~ Y ~ * * * * ~  

C SORT THE CONSTRAINTS FOR THOSE THAT ARE VTOLATED. 
C K A  = N O .  OF NEWLY VIOLATED CONSTRAINTS 
C KO - - 11 " OLD CONSTRATNTS S T I L L  VIOLATED 
C KOF - - I' II C 0 NS T R A I N'l' V I O  LA 'r I O  N S 
C M C V O ( I ) =  'I THE OLD VTOLATED CONSTRAINT 
C N C V l ( I ) =  'I I' 'I II 11 S T I L L  VIOLATED 
C NCV(T)  = I' 'I I' NEWLY VIOLATED CONSTRATNT 
C ~ X Y Q ~ Y l * * f ~ * * t * * ~ Q Q * * * * ~ * * * , ~ ~ * * * ~ ~ ~ * * * * ~ * ~ ~ * * * ~ * * * * Y * * * * * * * ~  

C * f ~ ~ * * + 3 Y * + * * t Y Y Y Y * * * * ~ * * * * t * * * * * * * * ~ ~ ~ * * ~ * * ~ Z * * * * * * * * * ~ * ~ ~ ~ ~  



K A  =O 
KO =O 
DO 2 T = l , N C  
BF =BC (I ) -B ( 1 ) 

C 
C**Q** T H J S  IS  H E R E  T O  A L L E V I A T E  NUMERTCAL D I F F I C U L T I E S  
C 

IF(ARS(BF).LT.ETOL.AND.FLAG2.EQ.l)GO TO 51 
I F ( F L A G 6 . N E . 2 ) G O  T O  62 

C * * * f * t f t f * f Y + ~ * * f * + * * * ~ f ~ Q ~ * ~ * ~ ~ ~ * ~ * ~ * ~ ~ * ~ * * * ~ ~ ~ ~ ~ ~ x * ~ ~ ~ ~ ~ ~ ~ ~ f ~ ~ ~  

C * * f * * f * * Y t ~ * * Y * , t * f ~ * * * ~ * * * * , X ~ ~ * * * U * ~ ~ ~ ~ ~ ~ * * * X ~ * ~ ~ ~ * ~ * ~ ~ * ~ * * ~ f * +  

C THE F O L L O W I N G  S E C T I O N  TS H E R E  TO C H E K  FOR A N E W  C O N S T R A I N T  
C OEJWG E N C O U N T E R E D  SJHEN 'THE S E A R C H  VECTOR P O T N T S  I N T O  
C F E A S I B L E  S P A C E  A F T E R  TEE PfiOGflAM HAS STEPPED T N T O  
C I N F E A S I B L E  S P A C E .  
C * * * f t f * Y f * * * * * I Y * * C * * * ~ * ~ * ~ t ~ * * * * * ~ , * * * * ~ ~ ~ ~ * ~ ~ ~ ~ * * f f * * * ~ ~ f ~ f ~ ~ * ~  

~ f ~ * ~ ~ * * * * Y * Q * * * * P H U ~ ~ ~ ~ ~ ~ ~ * * ~ * * f ~ ~ ~ * n ~ ~ * * * ~ ~ f ~ * ~ ~ ~ ~ ~ ~ * + ~ * ~ ~ ~ * ~ ~ * ~  

I F (  B F . L T .  0.. AND. I. L E .  N L E C ) G O  T O  2 
I F ( B F . G T .  0. .AND. I . G T . N L E C + N E C ) G O  T O  2 
DO 64 I T = l , K O F O  
W R J T E  ( 6 , 3 2 8  )I,  N T O C ( 1 I )  

328 FORMAT('I=' , 1 3 , '  N'I 'OC='  ,I3) 
6 4  I F ( I . E Q . N T O C ( I I ) ) G O  TO 4 6  

G O  T O  2 

I F (  B F . G E .  0.0.  A N D .  I . .LE .  NLEC ) G O  T O  2 
I F ( B F .  L E .  0 .O .AIJD.  T.GT. ( N L E C + N E C )  )GO T O  2 

I F ( K O F . E Q . O ) G O  T O  4 6  
DO 45 K=l,KOF 

45 I F ( N C V O ( K ) . E Q . J ) G O  'TO 50 
4 6 C O N T I N U E  

6 2  C O N T J N U E  

51 CONTINUE 

K A  = K A  +1 

GO TO 2 
N C V  ( K A  ) =I 



50 K O = K O + l  
N C V I ( K O ) = T  

2 CON'TTNUE 
C 
C***** T H I S  T E S T S  TO S E E  TF A N Y  N9W COMSTRATNTS WERE VTOLATED 
C AFTER THE BHAEJCH TT T E S T S  'TO SEE TF TT WAS ALREADY 
C T N  A CONSTRATNT PLANE ( S E E  COMMENT BELOW). 
C 

T F ( K A . E Q . O ) C B  T O  1 3  
WRITE(  6 , 3 0 O ) K A ,  (NCV ( T )  , T = 1 ,  K A  ) 

300 FORMAT(T.3, '  CONSTRAINTS HAVE BEEN VTOLATED. THEY ARE' , 2 0 T 4 )  
C Y X * Q * f , Q f f Y * ~ ~ 8 t * C t * ~ ~ ~ * ~ ~ * ~ ~ * t ~ X ~ ~ * * ~ ~ ~ f ~ ~ ~ ~ ~ ~ * * ~ * ~ ~ k ~ ~ ~ ~ ~ ~ ~ ~ * ~  

C I Y P * f * Q * X * t f * i * * ~ M * ~ ~ ~ ~ ~ * * * * ~ * ~ * f ~ * ~ * ~ ~ ~ * ~ * * ~ * i f ~ * ~ * * ~ ~ ~ % * ~ ~ f ~ ~ f  

C***f* F L A 2 4  TS S E T  WHFPJ 'THE MEXT X O  BETNG LOOKED FOR TS DOWN A 
C SEARCH VECTOR ALREACY I N  A PLANE THAT HAS VIOLATED AT 
C LEAST ONE OTHER PLANE. 
C*"*** FROM HERE TO STATEMENT 4 A SI!4UL'TANEOUS SOLUTTON OF 
C THE SEARCH VECTOR A N D  'THE CONSTRATN'T PLANES TS CALCULATED 
C TKTS ACCOMPLISHES TWO THTNGS 
C ( 1  1 A N  EXACT P T .  ( X l )  T N  'THE PLANE TS LOCATED 
C ( 2 )  A N  EXACT DTSTANCE(ALPHA) FROM X O  TO X 1  TS CALCULATED 
C t ~ * * i * * f * t t i t t f f * * * ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ * * t ~ ~ Q ~ ~ i ~ ~ t * ~ ~ k ~ ~ * * * ~ f ~ ~ ~ ~ ~ ~ ~ ~ * ~ *  
C f * X f ~ * ~ f C * * f f Q U i X f * k * Q ~ ~ ~ ~ ~ * ~ ~ t ~ Q ~ ~ f ~ * * ~ ~ Q ~ ~ ~ * * ~ ~ f * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~  

FLAG4 =FLAG2 
F L A G 2 = 1  
FLAG3=O 
DO 1 5  T = l , K A  
S A X ( T ) = O . O  
S A H D ( T  ) = o .  o 

1 5  CONTINUE 
DO 4 T = l , K A  
DO 3 K = 1 , N 1  

T F ( F L A G 4 . E Q . O ) G O  TO 2 4  
S A H D  ( T  )=SAHD ( 7 :  ) + N  U M *  A (NCV ( I  ) , K ) * P  ( K  ) 

S A X (  T ) = S A X (  T ) + A  ( P J C V  ( T ) ,K) ~ X O  (K ) 



GO "0 3 

SAHD( I ) =SAHD ( I ) +NUM*A ( L ~ C V  ( I ) , K )  * d ~ 2 0  ( K )  
24 C O i Y y I I t u f i  

3 C O N T I M U E  
4 ALPBA ( I )  = ( BC ( N C V  ( I ) ) -SAX( I ) ) / S A H D (  I )  

C 
C*****TdIS A L P d . 4  IS I N  THE XQ. X l = X O + A L P i i A * d G R O  . I T  WILL BE USXI)  
C TO A S C E R T A I N  THE SlYIALLEST B O R D E R  OF T H E  FZASIBLE: S P A C E  
C T d I S  WILL BE DONE BY S O R T I i V G  FOR T r I E  S M A L L E S T  A L P l i A  
C 
c DO 16 I = l , K A  
C DO 1 6  K = l  , A 1  
C 
C*****SORT FOR T N 3  L O X E X T  A L P l i A  OP Yrid i?ZWLY V I O L A T S D  C O X S . T R A I d T S  
C***** I F  F L A G 6  = 2 P I N D  YH.E L A R G E S T  A L P H A (  SdEAHCH FROM I d F i 3 A S .  S P A C E )  
C 

T H I A L = l  .E-7 
I P ( P L A G 6 . G ' ~ . O ) T ~ I A L = l  .E-14 
NM = 1 
; I C s (  1 ) = 1  
ALPI)=ABS( ALPHA( 1 ) ) 

IF(ABS(ABS(ALP~~A(I))-ALPU).LT.THIAL)GO 

IF(ABS(ALP~~A(I)).LT.ALPO)G~ T O  5 

I~?(ABS(ALPHA(I)).GT.ALPO)GO TO 5 
52 I . F ( I . S Q . l ) S O  T O  5 

A L P O = A B S ( A L Y ~ A ( I ) )  

DO 5. I=l ,KA 
I F ( F L A G 6 . G T . O ) G O  TO 38 

38 COW IiYUE 
I F ( F L A G 6 . N E . 2 ) G O  Ti) 43 

G O  TO 52 
43 CONTIiYUE: 

N igI = I 

K= 1 
5 C O N T I M U E  

Ti) 52 



I F ( F L A C G . S q . Z ) F L A C G = O  
NFLASlO=O 

C 
C*****'C)NLY ONE C d J S T R A I l 4 T  riAS TIM LOWEST A L P L I A .  
C 

C 
C*****IIOW FJIANY O F  TdESE C O N S T H A I d T S  dAVE A L P L ~ A ' S  = 9'9 TiiE LO'dES:' 
C A L P r i A  AND V d A "  IS  T H Z I R  NUFIBER(  33'2 $ICs). 
C 

I F (  1W. EQ. 1 )GO T O  7 

DO 6 1 = 1  , IW 
IF(ABS(ABS(ALPAA(I))-ALPO).GT.TRIAL)GO TO 6 
M C S ( K ) = I  
K = K + l  

I F ( NFI . EQ .2 ) B C  S ( 2 ) = 2 
6 C O N T I i i U E  

K = X - l  
7 CO!?TI#Ul3 

KF=K 
C~~*************************************~*********************** 
C************************************************************** 
C 
c T k t I S  S L C T I O N  3XAivIIfu'ES ,TdE NEWLY A C Q U I R 3 D  C W S T R A I N T S .  
C I F  I T  DZTER?IIHZS T d A T  I T  dAS FOUND A .cJEW O N 2  TiiEN 
C FLAG6 I S  i\&SET 'TO 0. F ' L A S 6  I S  :JOT ZERO I F  I T  HAS BE3N 
C TdRdUGd 5 R O P .  NTOC C O M T A I i J S  ALL O F  TdE P R E V I O V S L Y  
C VIOLATED C O N S T R A I N T S .  
C 
C * * * * * * * * * * X * * * * * * X * * * * * ~ * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C**+******+*+**+*+****************************~***************** 
I P ( F L A G 6 . X Q . O ) G O  T O  63 
DO 6 8  I = l , K P  
DO 66 I I = I , K O i " O  

66 I P ( l i C V ( N C S ( 1 ) )  . E Q . i J T O C ( I I )  ) G O  TO 6 8  
w H I TE ( 5,33 5 ) ilc v ( N c s ( I ) ) 



335 F O R M A T ( I 3 , '  DOES NOT MATCH THOSE THAT WERE D R O P P E D ' )  
irJR I T  E ( 6 , 3  8 1 KOF 0 ,  ( N T  0 C ( I I ) , T I = 1 , K OF0 ) 
FLAG6=O 
GO '!'O 63 

68 CONTINUE 
I F ( K O . E Q . O ) G O  T O  73 
DO 6 9  T = l , I ( O  
DO 67 TI=l,KOFO 

WRT'I'E ( 6 , 3 3 5  )NC V 1 ( T ) 
i/JR.TTE( 6 , 3 8 1  )KOFO, (MTOC( T I ) ,  T I  =1,  KOr '3  ) 
F L A G 6 = 3  
GO TO 63 

69  CON'I'INUE 

6 7 .TF ( NCV 1 ( I :  . E Q  . N T  oc ( T .T ) GO TO 6 9 

C + ~ 4 x P X * * f f X C * f t f f f Q ~ x ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ * ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ x ~ ~ x x ~ ~ ~ ~ ~ ~  

C 
C IF ALL Or" THE SAME COMSTRAJNTS ARE RE-ACQUIRED 
C 'THEN ASSUME A CONSTRATNED EXTREMA A'T  X O  
C 
C ~ f ~ ~ f ~ ~ ~ f + * ~ , x B 3 * x % ~ ~ ~ f 4 ~ ~ ~ u ~ ~ ~ x ~ ~ x ~ ~ x ~ * * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * u * ~ ~ ~ x * ~ ~  

73 CONTINUE 
IF(KF+KO.NE.KOFO)GO TO 63  

CALL FUNCT ( X T ,  Y 0 ,  N 1 ,NUM) 
CALL GRAD(XT,GRO,  N l  ) 

FLAG3 =1 
RETURN 

63  CONTINUE 
C 
Cs*""*  ONLY THOSE CONSTRAJN'TS i51T'I'H A L P H A ' S  EQUAL TO 'THE 
C LOWEST ALPHA WTLL BE ADDED 'TO THE MAIJJFOLD. 
C 

W R T T E ( 6 , 3 0 4 ) A L P O , K , ( ! J C V ( N C S ( I ) ) , I = 1  , K )  
3 0 4  FORMAT( 'THE SMALLEST ALPHA='  , E 1 3 . 6 ,  

1 ' FOR I , T 3, ' CONSTR A JN'TS . ' / '  THEY ARE ' ,20T 3 ) 
C 



C***** !!lddSE XO'S A R E  Id TiiS C O i i S T H A I N 2  P L A N E .  
C 

DO 8 1 = 1  ,111 
I F ( F L A G 4 . E Q . O ) G O  '1'0 25 
XO(I)=XO(i)+ABS(ALPk€A(lW))*P(I) 
GO TO 8 

2 5  C I ) M T I N U 3  

8 CU!?'lIMJ.E 
XU( I) =XO ( I )+ABS ( A L P ~ A  ( I'JM) ) *YS.RO( I ) 

' 4 K I T I I : ( 6 , 4 1 0 ) i ' 3 1  ,(XO(I) , I=l , N 1 )  

C A L L  GRAD ( X O  , GHO ,14 1 , N UitI ) 
CALL F U X C T ( X O , Y O , N l  ) 
W H I T E ( 6 , 3 0 3 ) Y O , N l  , ( I ; R O ( I )  ,I=1 , N 1 )  

4 1 0  FI)RlcIA!P( 'Yi'dE IiEW XO C A L C .  V I T H  A L P A  I S ' / R E 1 3 . 6 )  

303 POR?IAT(  ' F ( X O ) = ' , X 1 3 . 6 / ' G R A D  P(XO)=' , ~ ~ 1 3 . 6 / / )  
18 C ~ I ~ T 1 N U . E  

KA=O 
KS=O 
T(ss=o 
iP(KOP.Nd.O)GO TO 47 
K O F = l  
lvlllB( O ) = O  

iO T O  49 
47 Ci)NTIi?UE 

I F ( K P . G 8 . d l  ) G O  T O  9 

C 
C***** S C A N  T H d  D I F F E R E N C E :  RETWEEl:lj T 6 E  OLD V I O L A T A D  C O J S T R A I E T S  
C AND THOSX 'L'iiAT A R E  STILL B E I N G  V I O L A T E D  
C 

DO 27 i = 1  ,KO)' 
DO 26 J = l , K O  

K S = K S + l  
26 I F ( N C V a ( I )  . E Q . N C V l  (J))3i)  '1'0 27 

C 
C***** KSS C O U N T S  ONLY T1-I.K NO. O F  OLD C O N S T R A I N T S  TO RE 



C 9ROPPI; 'D T H A T  ARE DXYl3CTED l3Y '26x C O i i S T R A I d T  'TXST 
C 

KSS =KSS+l 
blh3 (KS )=I 

2 7  d O L i T I L i U E  
C 
C***** 3XCESS C O J S T R A I d T S  WILL RE D E T d C T E D  AND 3 R i ) P P i W  
C 
C * * * * * * * * * * * * * X * * * * * * * ~ * * * * * ~ * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * *  

C * * * * ~ * * * * * * * * * * * * * i t * * * . * ~ ~ * * * * * * *  * * * * * * * * * * * * * * * X * * * * * * * * * * * * * * *  

C ddRN i4ii AME C O i i C E l l ~ i ~ L l  T r l A T  S P A C f i  13 C O M P Y S T 2 L Y  
C S P A N i ; T ~ D  AND TdE P R O J E C T I O N  V 3 C T i ) R  I S  T O T A L L Y  D g F I N E D  
C L! lAVING LVQ O R T i i O G O A A L  COMPONi3ii9!. D H O P  WILL Dj3TERI4I i ' id  
C Td0SJi C O i i S T R A I d T S  '20 BE D R O P P E D .  
C 1c* *** .* * ** ** **** * .* * * .* * * * ** * ** .k * * * * ** * * ** ***** * * ** ** * * * * ** ** * * * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I F (  (KP+KO-KS) .LY.,?I )a T O  55 
9 C O N T I N L J E  

C A L L  D R O P ( K O , d C V l  , K P , i i C ' V , i . i C S ,  V L A G 3 , F L A G 6 , P , X ' ? , l ~ T O C , K O ~ ' ~ , ~ ~ ~ I ~ l )  
i { H I T l 3 ( 6 , 3 8 1  ) K O F O ,  ( f J T O C (  I )  , I=l  ,KOJ?O)  

381 l ' ~ l 3 ~ ~ I A T  ( ' I F  , kiI3, A R E  R l i A Q U I R i i D  AN EXTdJ iP IA IS  ASSLJidllGD ' ) 
IF(  FLAG^. EQ. 1 )so TO 65 
I P ( F L A G G . L Q . 3 ) G O  T O  21 

C * * * * * X * * t * * * * * * * * * X * * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * * ~ * * * * * ~ * * *  

C 
C I2 F L A G 6 = 3  T L i M  THJi S E A R C I I  V A C T O R  PdIFi'S IiU" F X A S I B L . 3  * 
C I'LfdY A R X  K d P T  A2iD P R d J E C T I O l i S  A H E  MADE ON Td3ivI. I F  * 
C iiOAiE ARE PHgSXd9 Yddd !l3TU3il Ti) 'l!d3 I>FP 14.13T~iljD I S  AADA.  * 
C 
C**+*~********************************************************** 

* 

C SPACE. IF T ~ J ~ R E  ARE XQUALITY C O N S T R A I N T S  ~ S S E : N T  * 

* 

RETLJ'Hii 
55 C O i 4 ' l ' I i l U d  

IV( d E C .  dQ. 0. OH.  KS. EQ. 0 ) S O  1'0 71 
L =O 



4 
P 

KIND1 =1 
C 
C * Q * * *  WE MUST SCAN T H E  L I S T  OF CONSTRAINTS TO B E  DROPPED TO DETERYJNE 
C I F  A N Y  OF THEM ARE EQUALITY CONSTRATNTS. Ti? OWE IS THEN 
C I T  WILL DROPPED FROM 'THE L I S T .  
C 

54 CONTTNUE 
DO 70  I=KJNDl ,KS 
DO 70 J = l , N E C  
J F (  N C V O ( M N B (  T + L  ) ) . N E .  ( N L E C + J  ) )GO T O  70 
I F ( J . E Q . K S ) G O  TO 59  
L = L + 1  
DO 61 KTND=T,KS-1 

6 1 M N E (  K T N D )  = M N B ( K I N D + I  ) 

70 cowrmm 
G O  TO 58 

G O  TO 71 

K T N D l  = T  
GO T O  54 

71  CON'TTNUE 

58 KS=KS-1 

59 KSZKS-1 

I F ( K S . E Q . O ) G O  T O  4 9  
TF(KO.GT.O)GO TO 72 
W R TTE ( 6 , 3 2  1 ) KS , ( WC V ( MC S ( T ) ) , T = 1 , KS ) 
GO TO 49 

72 CON TI NU^ 
W R T 'T E ( 6 ,32  1 ) f< S , ( N C VO ( M NE ( TI ) ) , J = 1 , KS ) 

321  F O R M A T ( I 3 ,  I CONSTRAINTS WILL BE DROPPED. 'THEY ARE ' , 2 0 T 4 )  
49  CONTTNUE 

I F ( K O . E Q . O ) G O  T O  29 
C * ~ f ~ + * Y t ~ C + + Y * * Q ~ * , Q ~ ~ ~ ~ % ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ * * * * ~ * * ~ ~ ~ ~ * * ~ * ~ ~ * * ~ x ~ ~ ~ ~ ~ ~ ~ ~  

C A T  THTS POJNT WE UPDATE THE NCVO A R R A Y  B Y  
C DROPPJNG OFF THE CONSTRATNT NOT S T I L L  
C VJOLATED. S I N C E  WE ASSUVE ALL PLANES 



C TO B E  L T N E A R L Y  INDEPENDEN'! '  T H E N  '!'HE NUMBER OF 
C C O N S T R A I N T S  V I O L A T E D  CAN NEVER BE G R E A T E R  THAN 
C T H E  D I M E N S I O N S  O F  S P A C E .  
C ~ P ~ * Y * * * * ~ 3 ~ P 4 * f t f i * ~ * * ~ * ~ ~ ~ ~ ~ * ~ x x * ~ % ~ * % ~ ~ ~ ~ ~ ~ * * x ~ ~ ~ ~ ~ P ~ ~ ~ ~ ~ * ~ ~ ~  

I D D = O  
DO 28 T . = l , K O  
I F ( K S . E Q . O ) G O  T 3  57 
I F ( K S S . E Q . O ) K S S = l  
DO 56 J=KSS,KS 

56 T.F(NCV1 ( T )  .EQ.NCV! l (MNB(J  ) ) ) G O  'TO 28 
57 C O N T J N U E  

I DD = I D D + l  
N C V O ( I D D ) = N C V ~  ( I )  

28 C O N T T N U E  

29 C O N T I N U E  
KO =KO -KS 

I F (  KS. EQ. 0 ) G O  
NSN =-1 

C 
C*fi*"* T H I S  ROUTINE 
C 
C 

48 

44 

32 2 

39 

31 

T H E  ARGUMENT 

TO 48 

C A L C U L A T E S  AND U P D A T S S  T H E  P R O J E C T J O N  M A T R I X ( A A T 2 )  
MNB HAS NO E F F E C T  TN SPAN F O R  S U B T R A C T J O N  

C A L L  S P A N (  NCVO , MNB , T D D ,  NSN, .TO ) 
CO N'T I N  UE 
T F ( K F . E Q . O ) G O  TO 39 
DO 4 4  .T.=l,KF 

iJRITE (6,322)KF, ( N C V  ( N C S ( I )  ) , I = 1 ,  KF) 
F O R M A T ( I 3 , '  C O N S T R A J N T S  W I L L  B E  ADDED.  T H E Y  A R E '  ,20T4)  
NSN =1 
C A L L  S P A N ( N C V , N C S , K F ,  NSN, P O )  
C O N T I N U E  
RC = K C + 1  
DO 31 I = l , N l  

N C V O ( K O + I  ) = N C V ( M C S ( T  1)  

P ( I  )=O.  0 



W R I T E ( 6 , 3 3 3 )  

W R T T E ( 6 , 3 1 4 )  ( N 1  ,(AAT2(T,J),J=l,Nl),T=l,Nl ) 
DO 40 J=l ,M1 
DO 4 0  T = l , N l  

333 F O R M A T ( ' T H 1 S  I S  THE PRESEMT PROJECTION MATRTX' ) 

C 
C***** P I S  THE PROJECTION OF THY G R A D  O!J THE CONSTRATN'T 
C MANIFOLD. IT IS TkIE NEW SEARCH VECTOR 
C 

I F ( T . N E . J ) G O  T O  1 6  
P ( . T : ) = (  1.  -AAT2( I ,  J ) )  * G R O  ( J ) + P ( T .  ) 
GO T O  40  

4 0  CON'I'INUE 
1 6  P(I)=-AAT2(T.,J)~GRO(J)+P(T) 

PT=O.O 
DO 42 T = l , N l  

42 P T  = P T + P  (1 ) k * 2  
KOF = KF +KO 
PT =SQR T (P'!' ) 

C 
C***** I F  PT=O A N D  G R A D  DOES NOT POTNT J N T O  F E A S J E L E  SPACE 
C THEN A CONSTRAINED YAX(MTN) HAS BEZN MET. 
C 

I F ( P T . G T . . O O l ) G O  TO 1 9  
F L A G 3 = 1  
GO TO 65 

1 9  CONTINUE 
C i * , P f * 9 Y * * * * t Y # f * * C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~  

C * 
C I F  WE H A V E  DONE A SMALL S T E P  I N T O  F E A S J B L E  SPACE 
C 'THEN WE WILL CHECK AT T H I S  POINT T O  DETERMTNE TF & 

C THE NEW CONSTRAJMT MANTFOLLD CONTAINS T H E  Q 

C EQUALITY CONSTRAINTS. 'THTS NEED OVLY BE DONE AT Q 
C A POTNT WHERE THE PROJZCTION VECTOR POTNTS f 

C DIRECTLY A W A Y  FROM THE ORTGTNAL POTNT WHERE ALL )c 

L 



C OF THE CONSTRAINT PLANES INTERSECTED. THTS IS  * 
C DETERMINED BY: * 
C 
C * 
C * Y t f ~ r f ~ Y 3 * l f f f Y * ~ f f * Q f f f * * t i i t f Y Q f t * Q r ~ t ~ ~ ~ ~ ~ * * ~ * * ~ ~ ~ ~ * ~ ~ ~  

+ 1 = ( x o -x'r ) / A B  s ( x o -XT ) *P /PT * 

I F ( F L A G 6 . E Q . O ) G O  T O  1 1  
X'r D =O . 
XTDT =O . 
DO 12 I = l , N l  

1 2  XTD =XTD+ (XO ( I  ) -XT ( I  ) ) '*2 
XTD =SQR T (XTD ) 
DO 30 I = l , N l  

30 X'TDT = ( X O  ( I ) -X'T ( I ) ) *P ( I ) /(  XTD*PT j +XTDT 
C 
C * * * f &  CHECK T O  S E E  I F  ALL CONSTRAINTS ARE GENERATED 
C 

IF(X'TDT. LT. 0.O)CO TO 1 1  
I F (  ABS( ABS (XTDT)  -1. ) . CT. 1 .E-1 2 ) G O  TO 1 1 
Wii I T E  (6 ,387  )ABS ( ABS ( X ' r  DT ) -1 . ) 

387 FORMAT('MUST BS > THAN l . E - 1 2  BUT I S ' , E 1 4 . 6 )  
C 
C * * f * *  S C A N  MANIFOLD T O  S E E  TF ALL EQUALT'TY CONSTRAINTS ARE PRESENT 
C 

M =O 
TF(KF.EQ.O)GO TO 33 
DO 32 I = I , K F  
T F (  N C V ( N C S ( I  ) ) .LE .  NLEC.  O R .  N C V ( N C S (  I ) ) .GT. ( N L E C + N E C  ) ) G O  T O  32 
M =M+1 

32 CONTINUE 
33 I F ( K O . E Q . O ) G O  'Tc) 3 7  

DO 34 I = l , K O  

M =M+1 
3 4  CONTINUE 
37 CONTINUE 

IF( Nevi ( I )  .LE .  N L E C . O R .  ~ w i  (T ) .GT .  ( I \ J L E C + N E C )  ) G O  T O  3 4  

I 



C 

35 

36 

1 1  

13 

3 02 
10 

17 

I P ( M . E Q . i i l C ) G O  Ti) 35 
DO 35 I = 1  , i i l  

F L A G 3  = 1 
HETUHN 
FLAL;G=O 
K 0 P O  = 0 
C O P l I N U i i  
HETURN 
It'( P L A Q 2 . E Q .  1 ) G O  T O  1 7  

x1 (I)=XY(I) 

W R I T d (  5 , 3 0 2 )  

R E T  u R N 
C OM T I N U E 

~ * * * * * * * * X * * * * * * * * * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ ~ * * * * * * * * * *  

C * 
C KO=KO? NO C O N S T R A I N T S  V I L L  I33 D R O P P Z D  FROM A A T 2  * 
C * 

C K U = O  Ttid CASE:  iJH8RE Tki3 G R A D  P O I N T S  lti'.?O P X A S .  S P A C E  * 

C 
C 

K c ) < K O P  SOivIE C O N S T R A I N T S  A R X  TO S E  D R O P P E D  * 
* 

C P L A G 7 = 1  A N  3XTi lEIYA WAS E O U J D  014 T I M  L I d E  S E A R C r i  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

IF(KO.EQ.O)GO T O  21 
C A L L  G R A D ( X 1  , G R T , i J l  , N U N )  
I P ( F L A G 7 . N Q . l ) G O  T O  74 
I F ( X O . L T . K O P ) G O  TO 18 
D O  79 1 = 1  , & 1  

RETUriN 
79  X O ( I ) = X l ( I )  

74 D O  78  1 = 1  , N 1  
78 G R O ( I ) = G R T ( I )  



T . F ( K O . E Q . O ) C O  T O  29 
DO 27  T = l , K O  
XI ( T  ) = O .  
AM'I' ( T  ) =A;U1V 
TF ( N C V l  ( T  ) . L E .  N L E C + N E C  )AMT(T. ) = - A M V  
DO 2 4  J=1,Nl  

2 4  X I  ( T ) = X l  ( I ) + A ( N C V l  ( T )  , J j X k 2  
2 7  X 1  ( T ) = S Q R T ( X l  (1 ) )  

DO 25 I = l , K O  
DO 2 5  J = I , N l  
X O  ( J  ) =XO ( J  ) + A  ( N C V  1 ( T  ) , J ) / (  X 1 ( T  ) J;.AMT ( T ) k5. E5 ) 

2 5  CUN'T1,YUE 
29 CON' I ' l i JUE 

TP(KF.EO.O)GO 'I'O 48 
DO 33  T = l , f ; F  

A!vI? (1 ) =AYV 
I F  ( N C V ( I4 C S ( T ) ) . LE . N LEC +N E C  j A PIT ( T ) = - A  PI V 

X I  ( I ) = O .  

~3 32 J = I , ! J I  
32 X l ( T ) = X l ( T ) + A ( N C V ( N C S ( T  j ) , J j h x 2  
33 X l  ( T ) = S Q H T ( X l  ( I  j )  

DO 34 I = l , K F  
DO 34 J = l , N l  
X O (  J ) = X O ( J  ) + A (  N C V ( N C S (  T j ) , J > / ( X i  ( T  )"AMT( T )%!I. E5) 

34 C O N T T i J U E  
48 C O N T T N U E  

DO 35 I = I , N l  
! \~cvo(I  j = O . O  

35 NCVf  ( T ) = O . O  
i4R TTE ( 6 , 3 0  1 )?\I 1 , ( X 0 ( J j , T = 1 , N 1 ) 

301 F O R P I A T ( ' ~ E  \*]ILL STAFiT AT 'THE FOLLOiv'TNG P O I N T  & FOLLOLJ ?HE G f l A D '  
*/i\JE13.6) 

R E T U R N  
EPJ 0 



00 
0 

I F ( K d . L T . K O F ) S O  Ti) 1 8  
D O  23  1 = 1  , i l l  

23  XO(I)=Xl ( I )  
Gi) TO 39 

21 I F ( i J d C . i i E . O ) G O  T O  75 
F L A G  2 =2 
KOF=O 

65 C O i J T I N U E  
DO 53 1 = 1  , d l  

DO 53 J=l ,hi1 

RETURN 

x1 (r)=xo(r) 
53 A A T 2 ( I , J ) = O . O  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C IF TkiE GRAD POINTS I i i T O  F E A S 1 3 L B  S P A C E  I T  ' i J I L L  * 
C S T I L L  t l A V E  T O  S A T I S F Y  ,Id& 3 Q U A L I T Y  C O d S T R A I I ? T S  * 
C d E I ? C X  TriE GRAD WILL C O i J ' r I N U E  TO BB P R U J E C T 3 I D  * 
C dNTO Tdij 3:GTiTALI'i'Y C O N S T R A I l i ' 2 8 .  ONLY Ti iX E Q U A L I T Y  * 
C C O N S T H A I d T S  i 4 A N I P O L D  WILL B3 KEPT. * 
~~*~*******************t**************~*******************~~***** 

75 DO 76 1 = 1  , d l  

76 A A T 2 ( I , J ) = O . O  
DO 76 J=l  ,id1 

I O = c )  
KO=O 
Kr '=iJEC 
DO 77 1 = 1  , K P  
N C V (  I )=UEC+I  
NCS ( I ) =I 
I\ICVO ( I ) = l i L E C + I  

7'7 1 i C V l  (I)=NLEC+I 
GI) Ti) 48 
EpiD 





00 
N 

AL( T , J)= (l.O-AAT2( J ,  K j ) * A (  PJO ( M O C (  T j ) , K )+AL( T , J j 
GO T O  3 

2 3 .4 L ( T , J )  =-A AT 2 ( J , K ) f A ( ?JO ( NOC ( T j j , K j + A  L ( T , J 1 
3 CON'l'I.NUE 
ALP,RS=O. 0 
DO 4 K = I , N l  

4 ALABS=ALABS+AL(I,K)*^2 
ALABS=SQRT( ALABS j 
IF(ALARS.L'F'. . 0000000001  )SO TO 7 
DO 5 J = I , " l  

5 AL ( I, J ) A L ( 1, J ) /ALABS 
DO 6 K = 1 , N 1  
DO 6 L = l , i ; 3 1  
IF(L.LT.K)GO TO l g  
AATz(K,L)=AAT2(K,Lj+AL(T,Kj*AL(J.,L) 

19 AAT2(L,K j=AAT2(K,L) 
6 COI\J'I'T??UE 
7 CON' rTMUE 

HETURN 

1 0  C O N T T N U E  
C*k* '  SUBTRACT DTMENSJONS TO LOWEST ONE TO BE R E M O V E D  

DO 11 J=' l ,NI 
DO 1 1  K = l , N I  

11 AAT2(J,K)=O.O 
DO 2 J=1,KN 

2 rF(~?O(MOC(Jj).LT.(XI-K~I) >SO T O  1 6  
Di) 17 T=TI,II.-KN,-1 
DO 1 7  K = l , I d l  
EO 1 7  L=l ,Ml 

AA'T2( K,L )=AAT2(K,L )-&L (T ,K)$AL( J ,L 
TF(L.LT.K)GO 'ro 20 

20 AAT2(L,K)=AAT2(K,L) 
1 7  C O N T J N U E  

RETU3N 
1 6  COi iTTPJU5  



JK=TS 
DO 8 J= l , J .T  
EO 8 K=I,KN 

TF(J.GE.JK)GO TO 8 
JK=J 

1 F ( NO ( NOC ( K j ) . NE. I DP A ST ( J 1 ) SO '1 0 6 

8 C O N T I N U E  
C 
C JX I S  EQUAL TO T H E  L0'V:'EST AL TO B E  DROPPED. T H E  ONES BELObJ THIS 
C NEED NOT B E  RECALCULATED. 
C 

TF(JK.LT.2)CO TO 15 

DO 13 K = l , N 1  
DO 13 L = l , N I  
T F ( L . L T . K ) G O  TO 21 
AAT2 (K,L) =AAT2 (K,L )+AL (I, 5 )  kaL (S ,L j 

DO 13 I=I,JX-I 

21 AAT2(L,K)=AAT2(K,L) 
13 CON'TINUE 
15 TI=JK-1 

GO TO 12  
ZND 

00 w 



00 
P 

S U B  R O U T  IN E D R O P  ( K O ,  NC V 1 , K r '  , NC V , NC S , FL 4 G 3 ,  F L  A G 6 ,  P , X? , MTOC , KO!? 0 ,  M UP1 i 
COMMON Xo ( 1 0 ) , X 1 ( 1 0 ) , !-I( 1 0 , l O  ) , A ( 2 0,lO j , G R O  ( 1 0 , E3 C ( 2 0 1 , 

IN  1 , fJC , AAT2( 10,  10 j , KOF , r.!CVO ( 2 0  
D I M S N S  T O 3  NCV I ( I O  

* U G R  0 ( I 0 ) , NTOC ( 10  j 
R E A L  LAMDA 
JNTEGER F L A G 3 ,  F L A G G ,  F L A G 7  

, N L E C ,  MEC , I\IGEC, tt!GEX, KC 
, NCV ( 1 0 ) , N C S  ( 1 0 ) , P ( 1 0 j , XT ( 1 (3 } , API'T ( 1 0 ) , 

C X t * x f * i X X l l t t K S ~ X + i ~ ~ ~ ~ x % % ~ ~ ~ ~ ~ ~ * x ~ ~ t ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ , * ~ i ~ ~ % ~ ~ ~ ~ ~  

C 
C F L A G 6 = 1  A L E R T S  CHK 'THAT A NE\/ P O I N T  JS R E I N G  R E T U R N E D  
C AND T ?  TS F E A S T B L E  SPACE. 
C 
C =2 A L E R T S  CHI(  'THAT '!RE NE\? POIN'? IS T N  
C T N F E A S I E L T  S P A C E .  
C 
c = 3  A L E R T S  C H K  ' T H A T '  '?HE NEW P O J N ' T  IS I!J TPjF 'EASTRLZ S P A C E  
C AND OULY T H Z  E Q U A L I T Y  C O N S T R A T N T S  A R E  KEPT 
C 
C F L A G ~ = I  W H E N  ' T H E R E  u w r  C C N S T R A T I J T S  P R E S E N T  
C 
C ~ i ~ x l * * k * k % x i # f X ~ ~ x ~ % ~ ~ ~ ~ ~ ~ ~ % % ~ ~ ~ ~ ~ ~ ~ % ~ ~ x ~ * ~ ~ ~ ~ x ~ ~ ~ % ~ ~ x ~ ~ i ~ ~ * ~  

F L A G 7 = 0  
KO FO =KF +KO 
B = O  
DO 2 8  T = I , N I  
P ( J  ) = G R 3 ( 1 )  

28 B=S+SHO(J)**2 
A G 3 O = S Q R T (  E . )  
DO 4 3  T = I , N l  

K =o  
NT = N  L E C  +i.JEC +!I G9C 
I F ( K O . E Q . O ) G O  T O  3 
DO 2 T = l , K O  

4 3  I I G R O ( T  j = m o ( r ) / A e R o  

I F  ( IJC V 1 ( J ) . G T  . N L E C  . A f\J D . NC V I ( J j . L E .  NLEC +!i E C  ) F L A G  7 = 1 



N'T OC ( T ) = NC v 1 ( I ) 
2 C O N ' f T N U E  
3 C O N T I N U E  

IF (KF.EQ.OjG0  TO 45 
DO 5 T = l , K F  
I F  ( iij C V ( i? C S ( 1 j ) . G'r . NL EC . A I\] E. NC V ( MC S ( 1 ) ) . L E .  NL E C  +N EC j F L A G  7 = 1 
N T o c  ( I + K O )  = ~ c v  ( NCS ( T  ) j 

5 CONTTtJUE 
45 C O I J ' I I M U E  

C 
C**"'* AM?' IS  U S E D  T O  S E T  T H E  S E N S E  OF THE NOR'.14LS 
C A l i l T > O  WHEN C O N S T R A T N T  TS L E  T Y P E  & GRAD POThJTS T O  
C F E A S T B L E  S P A C E  

21 F L A G 6 = 7  
WRITE ( 6 , 3 3 0  )NTOC ( T ) , J = I  , N 1 

330 F O R M A T (  I T H E  C O N S T R A T N T S  TO BE D R O P P E D  A R E '  ,2013 j 
A M V = l .  
TF(KO.EQ.O)BO TO 4 2  
DO 37 I = l , K O  
I F  ( iJC V 1 ( I ) . G'T . NL EC . A N  0. NC V 1 ( T ) . L E .  ( N L E C  +Y EC ) )GO TO 37 
B = O .  
DO 36 J = I , N l  
B=B+A ( N C V  1 ( T  1, J ) = (  X O  ( J  )+U ti3 0 ( J  ) %.  55-5 j 36 

C 314 P O R M A T ( ' I , N C V l  ( I ) , B C , B '  , 2 T 3 , 2 E 1 3 . 6 )  
TF ( B C  ( NC V 1 ( T j ) -9. L T  . 0 . A N D .  NC V 1 ( I ) . LE.  Iy L E C  j GO T 0 4 1 
J F  ( B C  ( NCV I ( T  ) ) -B . G T .  0. AND . NCV 1 ( 1 ) . GT . N L E C  + h E C  )GO 'TO 4 1 

37 C O N T I N U E  
42 C O N T I N U E  

IF(KF.EQ.O)GO T O  4 7  
DO 39  I = l , K F  
T F ( N C V ( MC S ( T ) ) . GT . NLE C . A N  D . NC V ( NC S ( T ) ) . L E .  N L E C  +N EC j GO 'T 0 3 9 
B = O .  
DO 38 J = I , N I  

38 13 =?+A ( N C  V (?JCS ( T  ) ) , J ) is ( XO ( J  )+UGR 0 ( J  ) 'IF. 5E-5 ) 
I F (  i3C( NCV ( N C S ( T  1 ) 1-B. LT .  0. AND. NCV ( N C S ( T  1 ) . L E .  N L E C  )GO TO 4 1  







00 
00 

C 
C L O A D  1 T N T O  A U G ( E s )  T M  ' T H E  P R O P E R  D I A G O N A L  P O S T ' T T O N  
C 

DO 2 J = l , N C 1  
A U G  ( T ,  N I  +J ) =o. o 

2 ~ F ( I . E Q , J ) A U G ( I , M l + J ) = l . ~  
IF(NGEC.EQ.O)GO 'TO 4 

C 
C L O A D  -1 T N ' T O  A U G ( C )  FOR T H Z  A R T T F T C T A L S  Or" G E  C O N S T R A T N T S  
C 

DO 3 J = 1 ,  N G E C  
AUG (T, N C 1  + N 1  +J )=O. 0 

3 I F  ( T . GT . ( N L X C  +tJ  E C  ) . A N D .  ( I - ( N L Z C  +It1 YC ) 1 . Ea.  J ) A  U G  ( T , :iJ 1 +TIC 1 +J ) =- I  . 0 
4 C O N T T N U E  

DO 7 .T = I  , NC 1 + W  1 + N G E C  
c1 ( T  > = o . o  

C 
C THJS A L L O l J S  T H E  I I C J "  €?0ld 'YO C O N T A T N  O N L Y  0 E X C E P T  
C UHEHE ' T H E R E  WAS A N  = ' T Y P E :  C O P J S T H A T N T  O R  W H E R E  
C A N  A R T I F I C T A L  HAS B E E N  A D D E D .  T H E  r f C J "  ROW JS 
C T E R M Z D  C 1  T M  "PEE P R O G R A M .  C 2  IS ''!'HE C O S T  ROW. 
C 

I F  ( 'I:. L E .  ( N 1 +N L E C  j . O R .  T . G'? . ( 1 +NC 1 ) ) G O  T C 7 
C 1  ( T  jzl.0 

7 C O N T I N U E  
DO 3 0  I = I , N C l  

30 C B ( T . j = C I  ( T + M l )  
1 7  C O N T I N U E  

W R T T E ( 6 , 3 0 1 )  

WRT'TE ( 6 , 3 0 2  ) ( N  1 , ( AUG ( T I, J J ) , J J = 1 , N 1 ) , TJ = 1 , NC 1 ) 

W R T T E ( 6 , 3  0 2 ) ( I4 C 1 +N GE C , ( A U G ( I T , J J ) , J J = 1 +N 1 , Id C 1 +l\J G E  C +N 1 ) , T T = 1 , NC 9 ) 

301 F O R M A T (  ' A U G  M A T R T X ~  

302  F O R M A T ( N E 1 0 . 3 )  

C 
C $ G * % *  C A L C U L A T E  T B E  C O S T  ROW 



C 
DO 6 T = 1 , ?JC 1 +I4 1 + N G E C  
c 2 ( 1  ) = O . O  

C 
C J I S  THE ELEMENT NO. T N  C O L .  5 
C 

DO 5 J = I . N C l  
5 C 2  (I: ) = C 2 ( T  )+CR( J j t A U G (  J ,  T ) 

c 2 (  1 ) = C 1  ( T  ) - C 2 ( X )  
8 COIJ ' rTNUE 

G J R I T E ( 6 ,  3 3 0 )  

WR J T E (  6 , 3 0 4  ) C 2 ( L L )  , L L =  1 ,  IdC1 +N 1 + N G E C  
330  F O R M A T ( ' T H 1 . S  JS T H E  C O S T  RO'vli' ) 

304 F O R M A T ( l O E 1 0 . 3 )  
C 
C * x % * *  THE C O S T  R Q W  IS S C A M N E D  T O  D E T E R Y T N E  Tr'  T N  F E A S I B L E  SPACE 
C 

DO 9 T =1 , NC 1 + N  1 + N G E C  
I F ( C 2 ( T ) . G E . 3 ) G O  TO 9 

C 
C * x * t =  I F  A N E G  C O S T  I S  F O U N C  'THE?] 'THE P ' r .  NOT Y E T  F E A S J B L E  
C 

GO TO 10 
9 CON'T1I\iil.!3 

C 
C*****  ' T H I S  IS ,9 F E A S T B L E  P'T. C A M D T D A T E  
C 

GO TO 18 
1 G  C O N ' T T N U E  

.T=l 
D O  11 J = I , N C ? + N I + N G Z C  

C 
C THE C O S T  ROW TS S C A N N E D  !?OR THE L O W E S T  V A L U E  
C 'THE J 1 T h  C O L .  TS THE P I V O T  C O L .  
C 



1 1  T F ( C 2 ( J ) . L r r . C 2 ( T ) > T = J  
C 
c C A L C U L A T E  THE R A T T O ' S  AND r 'TMD TH5' PTVOrf ELE!VIEN'T 
C B Y  FJNCTNG T H E  ROW WJTH '!'I!< L O W E S T  R A ' f T O  
C 

B C 1 2 = 1  . E 1 9  
J = ?  
DO 1 2  L = l , N C 1  
TF( P.lJG ( L ,  T ) . GT. 0. ) G O  T O  2 4  
B C 1  = I .  E20 
GO TO 2 3  

2 3  C O W V N U E  
2 4  B C l = S C C ( L ) / A U C ( L , T )  

T F ( F C l . G E . E C 1 2 ) G O  T O  1 2  
J =L 
B C 1 2 = B C 1  

1 2  COt\J'TTrJUE 
T C ( B . C l 2 . L E .  1 . E 1 8 ) G O  'TO 28 
W R I ' T E ( 6 , 3 1 5 ) T  

F L A G 5 = 1  
R E T U R N  

315 F O R M A T ( ' C O L U M W , T ~ , '  TS A L L  NEGATTVE;, OR Z E R O ' )  

28  C O N ' T I N U E  
C 
C""*%"jt T P V T K  K E E P S  T R A C K  OF T H E  ELEYY1ENTS ThI THkJ BASTS.  T P V T K ( J ) = I  
C MEANS THE J ' T H  B A S T S  V A R T A B L E  ='!'HE 1 " T H  V A R T A R L E  
C 

C 
Cii"**& AUG(J,I) TS TFE P J V O T  ELEMENT AND T H E  J ' ? H  8ASE V A R .  
C TS R E P L A C E D  EY 'TEE T 1 ' T M  V A R I A B L E  
C h * Q * *  NO1d NORMALTZE THE P T V O T  F70v 
C 

B C C (  J ) = B C C ( J ) / A U G ( J ,  . T I  
A U G T = A U G ( J , T )  

.TPV'TK( J ) = T  



DO 1 4  L = l  , NC 1 +M 1 + N G E C  
1 4  A i J G ( J , L ) = A U G ( J , L ) / A U G T  

C 
C f ' * x *  THE NEXT T A B L E A U  WILL 1\19iJ BE DEFTNED 
C 

DO 1 6  L = I , M C l  
C 
C*****  SKIP 'THE PTVOT R05J  
C 

I F ( L . E Q . J ) G O  T O  16 
A U G T = A U G  ( L ,  1 ) 

W R I T E  ( 6 , 3 1 4  ) L ,  J ,  B C C (  L )  , B C C (  J )  , AUG'T 
DO 15 K=l  , H C l + N I + M G E C  

S C C (  L ) = B C C (  L ) - B C C (  J ) *P.UGT 

P.uG (L,K j = A U C  ( L , K  j-ALJC( J ,  K )  k A U G T  

1 5 co wr T N  UE 
16  C O N T T N U E  

WRJTE ( 6 , 3 0 5  ) J ,  1 

314 FORFlAT('BCC(L)=BCC(L)-BCC( J ) * A U G T 1 / 2 T 3 ,  3 E 1 3 . 6  j 

305 F O R ? I A T ( ' P T V O T  E L E M E N T  T S '  ,2T3)  
C 
C AT THTS POT!??' 'THE B A S T S  V A R T A B L E S  M U L T T P L T E R  C O E F r ' T C E N ' I ' S  
C ARE U P D A T E D .  
C 

cs( J j = c  l ( 1 )  
GO TO 17 

18 C O N T I N U E  
C 
C * * * * %  THTS I S  A F E A S T H L E  P T .  C A N D I D A T E  
C%'*** A L L  R C C ' S  W T L L  BE SCAPdMED T O  B E  S U R E  ' T H E Y  A R E  P O S T T T V E  
C 

D 3  1 9  I = I , N C l  
I F ( B C C ( I ) . G E . O . O ) G O  TO 1 9  
GO T O  21 

1 9  C O N T I N U E  



C 
C " * * * *  S E T  THE T N I T T A L  FEASTBLE POTld ' r  
C 

20  

2 9  

3 2 0  

32 1 

21 
300 

DO 20 T . = l  , N C l  

DO 29 T = I , N C l  
I F  ( TPVTK (1 ) . GT. 0. AND. TPVTK (1 ) .LE .  N 1 ) X O  ( T  PVTK ( T  ) )=BCC( 1 ) 
C O  1J'T T N  UE 
WRTTE ( 6 , 3 2 0 )  
FORVAT('THT.S THE INTTTAL POT"!') 
V R 1 T E  ( 6 , 3 2 1  j N  I ,  ( X O  (I 1, T = 1 ,  Nl ) 
F O R M A T ( N E 1 3 . 6 )  
RETURN 
U R I T E ( 6 , 3 0 0 )  
FORMAT(' 1\10 I M I ' f T A L  F E A S I B L E  POTI\1T POUND'  ) 
FLAG5=1  
RETURN 
E N D  

xo(r>=o.o 
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